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Foreword

Actuarial Science is a discipline with a fascinating blend of traditional approaches,
developed over many decades of experience, and modern techniques which are
available thanks to the fast development of statistical, computational, and mathe-
matical tools, new insights into dependence modeling, analysis of big data, financial
engineering, risk management, and insurance economics. At the same time the
insurance market is competitive and dynamic, and popular products are ever-more
complex mingling the actuarial and financial world to an extraordinary extent.

Whereas the life and non-life insurance markets are driven by somewhat dif-
ferent factors, each is equally challenging. Some life insurance products have an
extremely long duration, during which the economic environment can change
dramatically, and the underlying actuarial risks are typically themselves subject to
changes and developments. At the same time, despite a plethora of available data,
the amount of immediately relevant data to better understand a particular type of
risk is often limited and it is an art of its own to distinguish the relevant ones from
the others.

This makes clear that the modern actuary needs a solid education in all these
fields. In particular, it is not only the learning of facts and available formulas and
procedures that need to be part of such an education, critical reflection about the
potential and limits of methods is also of ample importance in an ever-changing
actuarial environment, in which appropriate and robust decisions need to be taken,
sometimes over long time horizons.

In Europe there is a good tradition for this type of approach, and the present
textbook in its second edition is a nice example of it. The authors have managed to
compile the standard introductory actuarial education material in a very accessible
and intuitive way, where the understanding of principles is in focus. For the next
step of technicalities, the reader is in each chapter targeted towards the respective
relevant literature. The book gives a well-structured overview of some of the most
important actuarial topics, deals with both traditional and recent challenges, in
particular for life insurance, and discusses related practical issues. The material is
also in line with the new education syllabus of the Actuarial Association of Europe.
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Altogether, with the present book Annamaria Olivieri and Ermanno Pitacco have
succeeded to provide a gentle introduction to the field of Insurance Mathematics
that can be highly recommended to beginners for a first entry into the field, to
teachers as an accompanying textbook for introductory courses on the topic, and
last but not least to the experienced for the pleasure of reading!

Hansjörg Albrecher
University of Lausanne
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Preface to the First Edition

This book aims at introducing technical and financial aspects of the insurance
business, with special emphasis on the actuarial valuation of insurance products.
While most of the presentation concerns life insurance, non-life insurance is also
addressed, as well as pension plans.

The book has been planned assuming as target readers:

• advanced undergraduate and graduate students in Economics, Business, and
Finance;

• advanced undergraduate students in Mathematics and Statistics, possibly aiming
at attending, after graduation, actuarial courses at a master’s level;

• professionals and technicians operating in insurance and pension areas, whose
job may regard investments, risk analysis, financial reporting, and so on, hence
implying communication with actuarial professionals and managers.

Given the assumed target, the use of complex mathematical tools has been
avoided. In this sense, the book can be placed at some “midpoint” of the existing
literature, part of which adopts more formal approaches to insurance problems,
which implies the use of non-elementary mathematics and calculus, whereas
another part addresses practical questions totally avoiding even basic mathematics
(which, in our opinion, can conversely provide effective tools for presenting
technical and financial features of the insurance business).

We assume that the reader has attended courses providing basic notions of
Financial Mathematics (interest rates, compound interest, present values, accumu-
lations, annuities, etc.) and Probability (probability distributions, conditional
probabilities, expected value, variance, etc). As mentioned, Mathematics has been
kept at a rather low level. Indeed, almost all topics are presented in a “discrete”
framework, thus not requiring analytical tools like differentials, integrals, etc. Some
sections in which differential calculus has been used can be skipped, without sig-
nificant losses in understanding the following material.

Some details concerning the chapters of the book can help in explaining the
“rationale” underlying its structure and the choice of the materials therein included.
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Chapter 1 first aims at presenting the concept of risk, focusing in particular on
the (negative) consequences of some events which can concern a person, a family, a
firm, and so on. Second, the chapter describes the role of an insurance company,
which takes individual risks, builds up a pool of risks, and bears the risk of losses
caused by large numbers of events within the pool or unexpected severity of the
claims.

In Chapter 2 various aspects of the risk pooling process are addressed. The
effects of cross-subsidy (and, in particular, mutuality, and solidarity) are illustrated.
Then, referring to a simple portfolio structure, reinsurance arrangements, solvency,
and capital allocation are dealt with.

Hence, the first two chapters provide the reader with an introduction to risk and
insurance. Indeed, a risk-management-oriented approach should underpin, in our
opinion, the teaching of the insurance technique and finance. It is worth stressing
that these two chapters can fulfill the syllabus of a very short course (say, 20–25
hours) aiming to present the basics of risk identification, risk assessment, and risk
management actions.

Chapters 3 to 7 focus on life insurance. Although many topics dealt with are
rather traditional (life tables, discounting cash-flows, premiums, and reserves for
various insurance products), several issues of great current interest have been
included; for example, mortality trends, best-estimate reserving, risk margins, profit
assessment, linking life insurance benefits to the investment performance,
unit-linked products, and so on.

Chapter 8 addresses problems related to the post-retirement income. In partic-
ular, defined contribution pension plans are addressed. The protection that an
individual can obtain by underwriting appropriate benefits and financial guarantees,
before and after retirement, is examined. Special emphasis is placed on life annu-
ities as an element in post-retirement income arrangements. Risks emerging for the
provider are described, with particular regard to financial and longevity risks.

Finally, Chapter 9 deals with non-life insurance. First, an overview of the
contents of non-life insurance products is provided. Then, premium calculation and
related statistical bases are focused. Issues presented in Chapter 1 are progressed, in
order to introduce the stochastic modeling of claim frequency, claim severity, and
aggregate claim amounts. An introduction to technical reserves and profit assess-
ment concludes the chapter.

Each chapter concludes with a section providing bibliographic references and
suggestions for further reading. The list of references only includes textbooks and
monographs, while disregarding papers in scientific journals, congress proceedings,
research and technical reports, and so on. Our choice aims at limiting the number of
citations, in line with the teaching orientation of this work.

We have successfully tested the logical structure and the contents of the book in
various recent courses. In particular: a course on Insurance technique and finance
for graduate students in Finance at the University of Parma; a course on Life
insurance mathematics for undergraduate students in Statistics and undergraduate
students in Mathematics at the University of Trieste; courses on Risk and Insurance,
Life insurance technique, Non-life insurance technique and a distance-learning
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course on Insurance technique for employees of a European insurance company, at
the MIB School of Management in Trieste. Part of the material included in the book
has been used also in CPD (Continuing Professional Development) courses on Life
insurance technique for non-actuaries organized by the Italian actuarial professional
body. Further, some specific topics have been delivered in short seminars and other
teaching initiatives (for example: risk-management approach to insurance problems,
stochastic mortality, linking life insurance benefits to the investment performance,
etc).

Risks must be carefully identified, assessed, and managed by all the agents
(individuals, households, firms, public institutions, and so on). Risk transfer con-
stitutes an effective tool for managing risks, and the importance of insurers in this
transfer process is self-evident. Actually, the insurance business constitutes a
growing market. Appropriate risk management solutions must be taken also by
insurers, due to the risks they assume through their products.

If this book helps to better understand the technical and financial features of the
insurance activity, the role of insurers as intermediaries in the risk pooling process
and as financial intermediaries, and the basics of the risk management of an
insurance business, then we have achieved our objective.

Trieste Annamaria Olivieri
July 2010 Ermanno Pitacco

Preface to the First Edition ix



Contents

1 Risks and Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 “Risk”: Looking for Definitions . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Transactions with Random Results . . . . . . . . . . . . . . . 2
1.2.3 A Very Basic Insurable Risk . . . . . . . . . . . . . . . . . . . 4
1.2.4 Random Number of Events and Random Amounts . . . . 4
1.2.5 Risks Inherent in the Individual Lifetime . . . . . . . . . . . 9

1.3 Managing Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 The Risk Management (RM) Process . . . . . . . . . . . . . 15
1.3.3 Risk Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 Risk Assessment and Impact Assessment. . . . . . . . . . . 17
1.3.5 Risk Management Actions . . . . . . . . . . . . . . . . . . . . . 18
1.3.6 Self-insurance versus Insurance . . . . . . . . . . . . . . . . . 20
1.3.7 Counterparts in a Risk Transfer Deal . . . . . . . . . . . . . 22
1.3.8 Monitoring and the Risk Management Cycle . . . . . . . . 23
1.3.9 More on Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Risk and Impact Assessment: Some Models. . . . . . . . . . . . . . . 25
1.4.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 A Very Basic Model. . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.3 Random Number of Events and Random Amounts . . . . 27
1.4.4 Random Sums: A Critical Assumption . . . . . . . . . . . . 33
1.4.5 Introducing Time into Valuations . . . . . . . . . . . . . . . . 34
1.4.6 Comparing Random Yields . . . . . . . . . . . . . . . . . . . . 36
1.4.7 Risk-Adjusted Valuations . . . . . . . . . . . . . . . . . . . . . 38

1.5 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 42
1.5.2 Traditional Risk Measures . . . . . . . . . . . . . . . . . . . . . 43
1.5.3 Downside Risk Measures . . . . . . . . . . . . . . . . . . . . . 44
1.5.4 Risk Measures and Capital Requirements . . . . . . . . . . 46

xi

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec30


1.6 Transferring Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6.1 Building Up a Pool. . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6.2 Financing the Pool . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.6.3 The Role of the Insurer . . . . . . . . . . . . . . . . . . . . . . . 57
1.6.4 The Risk Transformation . . . . . . . . . . . . . . . . . . . . . . 59

1.7 Insurance Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.7.1 The Insurance Cover. Policy Conditions . . . . . . . . . . . 60
1.7.2 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.7.3 Pricing Insurance Products. . . . . . . . . . . . . . . . . . . . . 63
1.7.4 Premium Calculation. . . . . . . . . . . . . . . . . . . . . . . . . 64
1.7.5 Technical Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.7.6 Reserving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.8 References and Suggestions for Further Reading . . . . . . . . . . . 74

2 Managing a Portfolio of Risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2 Rating: The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 75
2.2.2 The Portfolio Structure . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.3 Homogeneous Risks . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2.4 Non-homogeneous Risks . . . . . . . . . . . . . . . . . . . . . . 77
2.2.5 A More General Rating System . . . . . . . . . . . . . . . . . 80
2.2.6 Rating Systems and Technical Equilibrium . . . . . . . . . 81
2.2.7 From Risk Factors to Rating Classes. . . . . . . . . . . . . . 84
2.2.8 Cross-Subsidy: Mutuality and Solidarity . . . . . . . . . . . 86

2.3 Facing Portfolio Riskiness . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.3.1 Expected Outgo versus Actual Outgo . . . . . . . . . . . . . 87
2.3.2 Risk Components and Risk Factors. . . . . . . . . . . . . . . 88
2.3.3 Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.3.4 The Risk Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.3.5 The Probability Distribution of the Total Payment . . . . 93
2.3.6 The Safety Loading . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.3.7 Capital Allocation and Beyond. . . . . . . . . . . . . . . . . . 101
2.3.8 Solvency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.3.9 Creating Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.3.10 Risk Management and Risk Analysis:

Some Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.3.11 The “Uncertainty Risk” . . . . . . . . . . . . . . . . . . . . . . . 108

2.4 Reinsurance: The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.4.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.4.2 Stop-Loss Reinsurance . . . . . . . . . . . . . . . . . . . . . . . 113
2.4.3 From Portfolios to Contracts . . . . . . . . . . . . . . . . . . . 115
2.4.4 Two Reinsurance Arrangements . . . . . . . . . . . . . . . . . 118

xii Contents

http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec39
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec39
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec40
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec40
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec41
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec41
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec42
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec42
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec43
http://dx.doi.org/10.1007/978-3-319-21377-4_1#Sec43
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec27


2.4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.4.6 Optimal Reinsurance Policy . . . . . . . . . . . . . . . . . . . . 122

2.5 Reinsurance: Further Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.5.1 Reinsurance Arrangements. . . . . . . . . . . . . . . . . . . . . 125
2.5.2 Random Claim Sizes: XL Reinsurance . . . . . . . . . . . . 126
2.5.3 Catastrophe Reinsurance . . . . . . . . . . . . . . . . . . . . . . 129
2.5.4 Purposes of Reinsurance . . . . . . . . . . . . . . . . . . . . . . 131
2.5.5 Insurance–Reinsurance Networks . . . . . . . . . . . . . . . . 132
2.5.6 Reinsurance Treaties. Reinsurance Programmes . . . . . . 133

2.6 Alternative Risk Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.6.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 135
2.6.2 Securitization and the Role of Capital Markets . . . . . . . 136
2.6.3 Organizing a Securitization Transaction. . . . . . . . . . . . 139
2.6.4 An Example: The Mortality Bonds . . . . . . . . . . . . . . . 140

2.7 The Time Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.7.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.7.2 Premiums, Payments, Portfolio Fund. . . . . . . . . . . . . . 144
2.7.3 Solvency and Capital Requirements . . . . . . . . . . . . . . 146
2.7.4 Generalizing the Model . . . . . . . . . . . . . . . . . . . . . . . 149
2.7.5 Solvency and Capital Flows. . . . . . . . . . . . . . . . . . . . 151

2.8 References and Suggestions for Further Reading . . . . . . . . . . . 152

3 Life Insurance: Modeling the Lifetime . . . . . . . . . . . . . . . . . . . . . . 157
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.2 Life Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.2.1 Elements of a Life Table . . . . . . . . . . . . . . . . . . . . . . 157
3.2.2 Cohort Tables and Period Tables . . . . . . . . . . . . . . . . 158
3.2.3 Construction of a Period Life Table . . . . . . . . . . . . . . 161
3.2.4 “Population” Tables versus “Market” Tables . . . . . . . . 163
3.2.5 The Life Table as a Probabilistic Model . . . . . . . . . . . 164
3.2.6 One-Year Measures of Mortality . . . . . . . . . . . . . . . . 165
3.2.7 A More Formal Setting: The Random Lifetime . . . . . . 169

3.3 A Mortality “Law” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.3.1 From Tables to Parameters . . . . . . . . . . . . . . . . . . . . 170
3.3.2 The Heligman–Pollard Law . . . . . . . . . . . . . . . . . . . . 170

3.4 Summarizing a Life Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.4.1 The Life Expectancy. . . . . . . . . . . . . . . . . . . . . . . . . 173
3.4.2 Other Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

3.5 From the Basic Model to More General Models . . . . . . . . . . . . 177
3.6 Heterogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3.6.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 177
3.6.2 Rating Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.6.3 Sub-standard Risks . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.6.4 The “Factor Formula” . . . . . . . . . . . . . . . . . . . . . . . . 182

Contents xiii

http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec39
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec39
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec40
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec40
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec41
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec41
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec42
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec42
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec43
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec43
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec44
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec44
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec45
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec45
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec46
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec46
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec47
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec47
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec48
http://dx.doi.org/10.1007/978-3-319-21377-4_2#Sec48
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec21


3.7 Mortality by Age and Duration . . . . . . . . . . . . . . . . . . . . . . . 183
3.7.1 Some Preliminary Ideas. . . . . . . . . . . . . . . . . . . . . . . 183
3.7.2 Select Tables and Ultimate Tables . . . . . . . . . . . . . . . 184
3.7.3 A Practical Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

3.8 Mortality Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3.8.1 Mortality Trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3.8.2 Representing Mortality Dynamics . . . . . . . . . . . . . . . . 190
3.8.3 Probabilities and Life Expectancy in a Dynamic

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.8.4 Approaches to Mortality Forecasts . . . . . . . . . . . . . . . 192
3.8.5 Extrapolation via Exponential Formulae . . . . . . . . . . . 195
3.8.6 Mortality Forecasts Allowing for Random

Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.9 Moving to a Time-Continuous Context . . . . . . . . . . . . . . . . . . 198

3.9.1 The Survival Function. . . . . . . . . . . . . . . . . . . . . . . . 198
3.9.2 Other Related Functions . . . . . . . . . . . . . . . . . . . . . . 199
3.9.3 The Force of Mortality . . . . . . . . . . . . . . . . . . . . . . . 201
3.9.4 Markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3.9.5 Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3.9.6 A Time-Continuous Dynamic Context. . . . . . . . . . . . . 207

3.10 Stochastic Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.10.1 Number of People Alive in a Cohort. . . . . . . . . . . . . . 207
3.10.2 Deterministic Models versus Stochastic Models . . . . . . 207
3.10.3 Random Fluctuations in Mortality. . . . . . . . . . . . . . . . 210
3.10.4 Systematic Deviations in Mortality . . . . . . . . . . . . . . . 212
3.10.5 The Impact of Mortality/Longevity Risk

on Life Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
3.11 References and Suggestions for Further Reading . . . . . . . . . . . 214

4 Life Insurance: Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.1 Life Insurance Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.1.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.1.2 Alterations of a Life Insurance Contract . . . . . . . . . . . 219
4.1.3 Insurances of the Person . . . . . . . . . . . . . . . . . . . . . . 220

4.2 Discounting Cash flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.2.1 Premiums, Benefits, Expenses . . . . . . . . . . . . . . . . . . 222
4.2.2 A Lump Sum Benefit in the Case of Death . . . . . . . . . 223
4.2.3 A Lump Sum Benefit in the Case of Survival . . . . . . . 224
4.2.4 Combining Benefits . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.2.5 Actuarial Values: Basic Terminology and Notation . . . . 226
4.2.6 Actuarial Values for Varying Benefits . . . . . . . . . . . . . 229
4.2.7 Actuarial Values with Zero Interest Rate . . . . . . . . . . . 230
4.2.8 Actuarial Values: An Approximation. . . . . . . . . . . . . . 231
4.2.9 Actuarial Values: Inequalities . . . . . . . . . . . . . . . . . . . 231

xiv Contents

http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec39
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec39
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec40
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec40
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec41
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec41
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec42
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec42
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec43
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec43
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec44
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec44
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec45
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec45
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec45
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec46
http://dx.doi.org/10.1007/978-3-319-21377-4_3#Sec46
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec14


4.2.10 The Actuarial Discount Factor . . . . . . . . . . . . . . . . . . 232
4.2.11 Actuarial Values: Further Relations. . . . . . . . . . . . . . . 233
4.2.12 Actuarial Values at Times Following

the Policy Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.3 Single Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

4.3.1 The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . 235
4.3.2 The Pure Endowment . . . . . . . . . . . . . . . . . . . . . . . . 237
4.3.3 Life Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
4.3.4 The Term Insurance . . . . . . . . . . . . . . . . . . . . . . . . . 242
4.3.5 The Whole Life Insurance . . . . . . . . . . . . . . . . . . . . . 244
4.3.6 Combining Survival and Death Benefits . . . . . . . . . . . 245
4.3.7 Endowment Insurance Products . . . . . . . . . . . . . . . . . 246
4.3.8 The Expected Profit: A First Insight . . . . . . . . . . . . . . 249

4.4 Periodic Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.4.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.4.2 Level Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
4.4.3 Natural Premiums. . . . . . . . . . . . . . . . . . . . . . . . . . . 256
4.4.4 Single Premium, Natural Premiums, and Level

Premiums: Some Relations . . . . . . . . . . . . . . . . . . . . 259
4.4.5 Single Recurrent Premiums . . . . . . . . . . . . . . . . . . . . 261
4.4.6 Some Concluding Remarks . . . . . . . . . . . . . . . . . . . . 264

4.5 Loading for Expenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
4.5.1 Premium Components . . . . . . . . . . . . . . . . . . . . . . . . 265
4.5.2 Expenses and Loading for Expenses . . . . . . . . . . . . . . 266
4.5.3 The Expense-Loaded Premiums . . . . . . . . . . . . . . . . . 267

4.6 References and Suggestions for Further Reading . . . . . . . . . . . 270

5 Life Insurance: Reserving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.2 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.3 The Policy Reserve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.3.2 The Policy Reserve for Some Insurance Products . . . . . 274
5.3.3 The Time Profile of the Policy Reserve. . . . . . . . . . . . 276
5.3.4 Change in the Technical Basis . . . . . . . . . . . . . . . . . . 284
5.3.5 The Reserve at Fractional Durations . . . . . . . . . . . . . . 288
5.3.6 The Retrospective Reserve. . . . . . . . . . . . . . . . . . . . . 292
5.3.7 The Actuarial Accumulation Process . . . . . . . . . . . . . . 294

5.4 Risk and Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
5.4.1 A (Rather) General Insurance Product . . . . . . . . . . . . . 295
5.4.2 Recursive Equations . . . . . . . . . . . . . . . . . . . . . . . . . 296
5.4.3 Risk Premium and Savings Premium . . . . . . . . . . . . . 299
5.4.4 Life Insurance Products versus Financial

Accumulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Contents xv

http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec34
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec35
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec36
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec37
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_4#Sec38
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec15


5.5 Expected Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
5.5.1 Expected Annual Profits . . . . . . . . . . . . . . . . . . . . . . 308
5.5.2 Splitting the Annual Profit . . . . . . . . . . . . . . . . . . . . . 309
5.5.3 The Expected Total Profit . . . . . . . . . . . . . . . . . . . . . 311
5.5.4 Cash Flows, Profits, and Premium Margins . . . . . . . . . 314
5.5.5 Expected Profits According to Best-Estimate

Reserving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
5.6 Reserving for Expenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.7 Surrender Values and Paid-Up Values. . . . . . . . . . . . . . . . . . . 319
5.8 References and Suggestions for Further Reading . . . . . . . . . . . 321

6 Reserves and Profits in a Life Insurance Portfolio . . . . . . . . . . . . . 323
6.1 The Portfolio Reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

6.1.1 Future Portfolio Reserves . . . . . . . . . . . . . . . . . . . . . 324
6.1.2 Safe-Side Reserve versus Best Estimate Reserve. . . . . . 325
6.1.3 The Risk Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.1.4 The Portfolio Liability and Beyond. . . . . . . . . . . . . . . 329
6.1.5 Risk Margin: The “Cost of Capital” Approach . . . . . . . 330

6.2 The Total Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
6.2.1 The Life Fund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
6.2.2 The Expected Life Fund and the Expected

Total Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
6.2.3 The Total Profit: An Alternative Interpretation . . . . . . . 336

6.3 Expected Annual Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.3.1 The Expected Surplus and the Expected

Annual Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
6.3.2 The Role of the Portfolio Reserve . . . . . . . . . . . . . . . 341

6.4 Expected Annual Profits: A More General Setting . . . . . . . . . . 345
6.5 References and Suggestions for Further Reading . . . . . . . . . . . 351

7 Linking Life Insurance Benefits to the Investment Performance . . . 353
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
7.2 Adjusting Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

7.2.1 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
7.2.2 Addressing Specific Insurance Products. . . . . . . . . . . . 358
7.2.3 Implementing Solutions. . . . . . . . . . . . . . . . . . . . . . . 364
7.2.4 The Yield to Maturity for the Policyholder . . . . . . . . . 368

7.3 Participating Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.3.1 Participating Policies with a Guaranteed

Annual Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.3.2 Participating Policies: Comparing Guarantee

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

xvi Contents

http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_5#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec9


7.4 Unit-Linked Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
7.4.1 Definition of Unit-Linked Benefits . . . . . . . . . . . . . . . 386
7.4.2 Unit-Linked Policies Without Guarantees. . . . . . . . . . . 387
7.4.3 Unit-Linked Policies with Financial Guarantees . . . . . . 392

7.5 Financial Options in Unit-Linked and Participating Policies . . . . 395
7.5.1 The Structure of Minimum Guarantees . . . . . . . . . . . . 396
7.5.2 The Valuation of Financial Options

in a Unit-Linked Policy. . . . . . . . . . . . . . . . . . . . . . . 397
7.6 Hybrid Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
7.7 With-Profit Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.8 Index-Linked Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
7.9 Universal Life Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
7.10 Variable Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
7.11 References and Suggestions for Further Reading . . . . . . . . . . . 416

8 Pension Plans: Technical and Financial Perspectives . . . . . . . . . . . 417
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
8.2 Pension Programmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

8.2.1 Individual and Group Pension Plans . . . . . . . . . . . . . . 418
8.2.2 Benefits and Contributions. . . . . . . . . . . . . . . . . . . . . 420
8.2.3 Timing of the Funding . . . . . . . . . . . . . . . . . . . . . . . 422

8.3 Transferring Risks to the Provider . . . . . . . . . . . . . . . . . . . . . 423
8.4 Pension Savings Before Retirement. . . . . . . . . . . . . . . . . . . . . 425
8.5 Arranging the Post-retirement Income . . . . . . . . . . . . . . . . . . . 425

8.5.1 Some Basic Features of Life Annuities . . . . . . . . . . . . 425
8.5.2 Packaging Benefits into the Life Annuity Product. . . . . 426
8.5.3 Life Annuities versus Income Drawdown . . . . . . . . . . 428
8.5.4 Phased Retirement . . . . . . . . . . . . . . . . . . . . . . . . . . 431

8.6 Risks for the Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
8.7 References and Suggestions for Further Reading . . . . . . . . . . . 437

9 Non-life Insurance: Pricing and Reserving . . . . . . . . . . . . . . . . . . . 439
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
9.2 Non-life Insurance Products . . . . . . . . . . . . . . . . . . . . . . . . . . 440

9.2.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
9.2.2 Main Categories of Non-life Insurance Products . . . . . . 440

9.3 Loss and Claim Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
9.4 The Equivalence Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

9.4.1 The Items of the Equivalence Premium . . . . . . . . . . . . 446
9.4.2 The Time-Pattern of a Claim . . . . . . . . . . . . . . . . . . . 447
9.4.3 The Expected Aggregate Claim Amount . . . . . . . . . . . 447

9.5 The Net Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
9.6 The Expense-Loaded Premium . . . . . . . . . . . . . . . . . . . . . . . . 452
9.7 Statistical Data for the Equivalence Premium . . . . . . . . . . . . . . 454

Contents xvii

http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_7#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_8
http://dx.doi.org/10.1007/978-3-319-21377-4_8
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_8#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_9
http://dx.doi.org/10.1007/978-3-319-21377-4_9
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec6
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec7
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec8
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec9
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec10
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec11
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec12
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec12


9.7.1 Risk Premium, Claim Frequency, Loss Severity . . . . . . 454
9.7.2 Units of Exposure: The Case of Heterogeneous

Portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
9.7.3 Units of Exposure: The Number of Policy Years . . . . . 458
9.7.4 Updating the Risk Premium to Portfolio Experience . . . 461

9.8 Stochastic Modeling of the Aggregate Claim Amount . . . . . . . . 465
9.8.1 Modeling the Claim Frequency . . . . . . . . . . . . . . . . . 465
9.8.2 Modeling the Claim Severity . . . . . . . . . . . . . . . . . . . 469
9.8.3 Modeling the Aggregate Claim Amount . . . . . . . . . . . 470

9.9 Risk Classification and Experience-Rating . . . . . . . . . . . . . . . . 473
9.9.1 Risk Classes and Rating Classes. . . . . . . . . . . . . . . . . 473
9.9.2 Risk Classification at Issue . . . . . . . . . . . . . . . . . . . . 474
9.9.3 Risk Classification at Renewal Times: Individual

Experience Rating . . . . . . . . . . . . . . . . . . . . . . . . . . 475
9.10 Technical Reserves: An Introduction . . . . . . . . . . . . . . . . . . . . 479
9.11 Earned Premiums, Incurred Claim Amounts

and Profit Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
9.12 Deterministic Models for Claim Reserves . . . . . . . . . . . . . . . . 486

9.12.1 Run-Off Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . 486
9.12.2 The Expected Loss Ratio Method . . . . . . . . . . . . . . . . 488
9.12.3 The Chain-Ladder Method. . . . . . . . . . . . . . . . . . . . . 489
9.12.4 The Bornhuetter-Ferguson Method . . . . . . . . . . . . . . . 491
9.12.5 Further Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

9.13 References and Suggestions for Further Reading . . . . . . . . . . . 493

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

xviii Contents

http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec13
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec14
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec15
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec16
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec17
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec18
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec19
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec20
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec21
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec22
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec23
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec24
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec25
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec26
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec27
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec28
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec29
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec30
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec31
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec32
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec33
http://dx.doi.org/10.1007/978-3-319-21377-4_9#Sec33


Chapter 1
Risks and Insurance

1.1 Introduction

The main purposes of this chapter are:

• to present the concept of individual “risk”, focussing, in particular, on quantitative
aspects of the (negative) financial consequences of some events which can concern
a person, a family, a firm, and so on;

• to introduce the role of an insurance company (briefly, an insurer), which takes
individual risks, building up a “pool”, and then bears the risk of losses caused by
an unexpected number of events in the pool, or by an unexpected severity of the
financial consequences of such events.

While basic ideas concerning the risk transfer process and the related construction
of a pool of risks are presented in this chapter, more complex issues regarding the
management of a pool will be discussed in Chap. 2.

1.2 “Risk”: Looking for Definitions

1.2.1 Some Preliminary Ideas

A number of definitions have been proposed for the term “risk”, some of which
concern the common language, whereas others relate to the more specific business
language, and the language of insurance business, in particular.

A rather general definition can be provided in mathematical terms. In fact, a risk
can be defined as a random number, X , whose actual outcome (or realization) is
unknown. Yet, a set of possible outcomes has to be specified, and probabilities over
this set have to be assigned.
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2 1 Risks and Insurance

As regards the set of possible outcomes, consider the following examples:

• Assume that X denotes the spot on the face which will appear by tossing a dice;
clearly, the possible outcomes are the numbers 1, 2, . . . , 6.

• X can represent, in financial terms, the damage consequent a fire in an industrial
building. So, X = 0 denotes the absence of a damage, whilst X = xmax denotes
the total loss of the building, whose value is xmax; thus, the interval [0, xmax] is
the set of possible outcomes of the risk X .

• If X represents the annual economic result of a firm, as at the end of the year,
X > 0 denotes a profit whilst X < 0 denotes a loss. The maximum possible loss,
x ′ (x ′ < 0), and the maximum possible profit, x ′′ (x ′′ > 0), should be estimated,
so that the possible outcomes of X are given by the interval [x ′, x ′′].
Note that in the first example above, the random number X refers to a “physical”

result, whereas in the other examples X is a random amount describing the financial
consequences of some events. In what follows we will be involved just in the financial
consequences of events, and hence the risks will usually be expressed in terms of
their monetary impact.

We now move to a set of examples, that we call “cases”, specifically concerning
the fields of finance and insurance. In this section we just aim at describing various
types of risk, looking, in particular, at the sources from which risks originate, i.e.,
the risk causes (namely, the financial scenario, some demographical aspects, and so
on). In the following sections, we will turn again several times on these cases; in
particular, probabilistic models will be introduced in order to provide an appropriate
assessment of risks and the relevant impact (see Sect. 1.4). Thus, we will follow a
stepwise process, starting from the discussion of various features of risks and finally
aiming at the description of important risk transfer opportunities.

1.2.2 Transactions with Random Results

We consider a set of transactions, denoted by A, B,…(for example, purchase of zero-
coupon bonds, investment in equities, and so on), where each transaction leads to a
random result at a stated time. We denote with XA, XB,…, the results produced by
the various transactions. For instance, transaction A leads to the result XA, whose
possible outcomes are xA,1, xA,2,….

The actual outcome of each random result depends on which state of the world
will occur, out of a given set of mutually exclusive states, S1, S2, . . . . Each state of
the world summarizes aspects of the economic–financial scenario, which can affect
the results. Table 1.1 illustrates the link between possible outcomes and a (finite) set
of states of the world.

In what follows, we will focus on two special cases, denoted as Case 1a and
Case 1b. Although these cases do not involve insurance issues, they constitute a
good starting point for discussion about the assessment of random results, as we will
see in Sect. 1.4.7 in relation to Case 1a.
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Table 1.1 A set of
transactions with random
results

S1 S2 . . .

XA xA,1 xA,2 . . .

XB xB,1 xB,2 . . .

XC xC,1 xC,2 . . .

. . . . . . . . . . . .

Table 1.2 Payoffs of two
zero-coupon bonds

S1 S2

XA 50 150

XB 100 100

Case 1a—Zero-coupon bonds. We refer to a zero-coupon bond, whose payoff at
maturity (say, in one year) depends on the state of the world at that time. When the
bond is purchased, the state of the world at maturity is unknown, namely random.
We assume, for simplicity, two possible states only, denoted by S1, S2. Further, we
assume that 50 and 150 are the corresponding payoffs of the bond. In particular, we
can assume that the outcome 50 implies a loss in relation to the amount invested in
purchasing the bond, whereas 150 leads to a profit. We denote with XA the random
payoff at maturity.

Another zero-coupon bond provides at maturity a payoff, XB = 100, which is
independent of the state of the world.

The former zero-coupon bond is a risky bond, whereas the latter is a risk-free
bond. Table 1.2 illustrates the relation between payoffs and states of the world. �

Remark It is worth stressing the true meaning of the expression “risk-free” referred to the bond
with payoff XB. It actually means that risk is regarded as negligible, in the sense that we are
(almost) sure that the payoff will be 100, whatever the scenario. In particular, the counterparty risk,
i.e., the risk of default of the bond issuer, is considered negligible and hence disregarded so far in
our model. Indeed, all models should provide simplified, yet unbiased, representations of a highly
complex reality.

Case 1b—Random yields. The possible yields (per 100 monetary units) provided
by four investments are represented in Table 1.3. For any given investment choice,
each outcome is linked to a state of the world. Low yields (e.g., 0 %, in the example)
can be considered as “losses”, if compared to an appropriate benchmark. �

In Case 1a (Zero-coupon bonds) and Case 1b (Random yields), the presence of risk
may lead either to a profit or a loss. Risks of this type are usually called speculative
risks.

Table 1.3 Investments with
random yields

S1 S2 S3

X1 5.0 6.0 7.0

X2 0.0 6.0 12.0

X3 5.2 6.1 6.1

X4 5.0 6.0 6.5
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1.2.3 A Very Basic Insurable Risk

The case discussed in this section can be considered the simplest example of a
situation in which the presence of a risk can only cause a loss. Thanks to its simplicity,
this case will often be referred to in the following sections, as the starting point for
introducing assessment procedures, construction of “pools” of risks, and so on.

Case 2—Possible loss with fixed amount. An “agent” (a person, a company, an
institution) may suffer a loss, because of an event (an accident) occurring within a
stated period. For example, the event could consist of the total loss of a cargo moved
by an aircraft. We denote with E the event which causes the financial loss, and with
x the amount of the loss itself. Thus, we are assuming that, if the event occurs, the
amount of the loss is certain. In the example above, no partial damage of the cargo is
accounted for. We can formally represent the potential loss with the random number
X , defined as follows:

X =
{

x if E

0 if Ē
(1.2.1)

This basic setting can be used to represent also other situations of risk. For exam-
ple, the death (say, within a one-year period) of a person, who sustains his/her family
with an income, may have dramatic consequences on the availability of financial
resources. Although the financial impact of the death could be assessed in terms of
the present value of future expected incomes, a huge degree of uncertainty in defining
the amount x obviously remains.

Another example is given by a permanent and total disablement, because of an
accident or a body injury, which causes the working incapacity of an individual. A
high degree of uncertainty in determining the amount x also affects this case. �

Remark The random variable

|E | =
{

1 if E

0 if Ē
(1.2.2)

is called the indicator of the event E . Then:

X = x |E | (1.2.3)

1.2.4 Random Number of Events and Random Amounts

More realistic situations can be depicted by generalizing the risk described as Case 2
(Possible loss with fixed amount). The five following cases constitute generalizations
of Case 2, as they include a larger set of random items, or a longer time horizon. In
particular:



1.2 “Risk”: Looking for Definitions 5

Case  2

• 1 year 
• 0 or 1 occurrence 
• fixed amount 

Case  3a

• 1 year 
• 0 or 1 occurrence 
• random amount 

Cases  3d,  3e

• 1 year 
• random number 

of occurrences
• random amounts 

Case  3c

• m  years 
• annual random 

numbers of 
occurrences 

• fixed amounts 

Case  3b

• 1 year 
• random number 

of occurrences
• fixed amounts 

Fig. 1.1 From the basic risk to more general situations

• the event causes a random loss, instead of a deterministic loss (Case 3a below);
• a random number of events, instead of one event at most, may occur within the

stated period, each event implying a deterministic loss (Case 3b and 3c below);
• a longer time horizon is addressed (Case 3c below), so that the time value of money

cannot be disregarded;
• a random number of events may occur within the period, each event implying a

random loss (Cases 3d and 3e below).

Figure 1.1 provides an illustration of the various generalizations, which are dealt
with in this section.

Case 3a—Damage/loss of a cargo. Unlike in Case 2 (Possible loss with fixed
amount), we also allow for partial damage of a cargo during the transport. Thus,
the damage is a random amount X . As regards its possible outcomes, we can choose
either a discrete setting, namely

X : 0, x1, . . . , xmax (1.2.4)

or a continuous setting, i.e., an interval of real numbers:

X ∈ [0, xmax] (1.2.5)

In both the settings, we have of course 0 ≤ X ≤ xmax. Typically, the maximum
amount xmax will be given by the value of the cargo. The outcome X = 0 denotes
the absence of damage thanks to the absence of accident.

A formal representation of the discrete setting, as described by the outcomes listed
in (1.2.4), can be as follows:
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X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 if E1

x2 if E2

. . . . . .

xm if Em

0 if Ē

(1.2.6)

where xm = xmax, and the eventsE1,E2, . . . ,Em are scaled according to an increasing
severity of the impact in terms of amount of the loss. The event E , namely the
occurrence of an accident whatever its severity may be, can then be represented as
the union

E = E1 ∪ E2 ∪ · · · ∪ Em (1.2.7)

whereas Ē still represents the absence of an accident (as in Case 2).
For various purposes (as we will see in Sect. 1.3), it is useful to summarize

the random loss using some typical value, such as the expected value. Obviously,
the calculation of the expected value (and other typical values as well) requires,
in principle, that a probability distribution on the set of possible outcomes (given
by (1.2.4) or (1.2.5)) has been assigned. As an alternative, in practice we can just
assume an estimation of the expected value, derived from previous (and similar)
experiences. �

Case 3b—Disability benefits; one-year period. An employer takes the risk of pay-
ing to the employees a lump-sum benefit in the case of permanent disability due to
an accident. Assume the following hypotheses:

1. the time horizon is one year;
2. n employees are exposed to the risk of accident;
3. for each employee, the amount of the benefit is C .

Let K denote the random number of accidents within a given year. Hence, the
total benefit paid by the employer is given by

X = CK (1.2.8)

The possible outcomes of K are 0, 1, . . . , n, so that the corresponding outcomes of
X are 0, C, . . . , n C .

Also in this case, the random payment can be summarized using some typical
value, in particular the expected value. For the expected value, E[X ], of the total
benefit, we clearly have

E[X ] = C E[K ] (1.2.9)

If we replace hypothesis 3 with the following one

4. for the j th employee, j = 1, 2, . . . , n, the amount of the benefit is C ( j) (e.g.,
related to the employee’s salary)
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then, the total benefit paid by the employer does not depend on the number of acci-
dents only, as it also depends on which employees enter the disability state. In formal
terms, with reference to employee j we define the random amount X ( j) as follows:

X ( j) =
{

C ( j) in the case of accident

0 otherwise
(1.2.10)

Then, the total random payment of the employer is given by

X =
n∑

j=1

X ( j) (1.2.11)

Note that, if we assume hypothesis 4, the expression of the total payment X is more
complex than that given by (1.2.8), as various amounts of benefit are in general
involved. �

It is worth noting that, in Case 3b (Disability benefits; one-year period), the risk
borne by the employer, which leads to the random payment X , is actually a set (or
a “pool”) of individual risks, each one represented by the possible disability of an
employee and the related payment C (or C ( j)) by the employer. Interesting features of
the risk pooling will be analyzed, in general terms, in the following sections starting
from Sect. 1.6.1.

Case 3c—Disability benefits; multi-year period. We generalize Case 3b (Disability
benefits; one-year period) by assuming that the time horizon consists of m years, and,
in particular, we are interested in setting m > 1 (say, m = 5 or m = 10). We still
assume that n employees (at the beginning of the m-year period) are exposed to the
disability risk. Moreover, we suppose that each employee who suffered an accident
implying permanent disability in any given year is replaced, at the beginning of the
following year, by another employee. Further, new entrants are not allowed. Hence,
n employees are exposed to risk at the beginning of each year. The individual lump-
sum benefit paid, at the end of the year in which the accident occurs, is C , whatever
the year may be (within the stated period).

We denote with K1, K2, . . . , Km the random number of accidents occurring in
the various years, so that

Xt = C Kt (1.2.12)

is the random amount paid by the employer at time t , namely at the end of year t , for
t = 1, 2, . . . , m. Note that, if we defined the total random payment of the employer
simply as follows:

X = X1 + X2 + · · · + Xm (1.2.13)

we would disregard the time value of money (i.e., we would assume a zero interest
rate). We will return on this aspect in Sect. 1.4.5. �
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Case 3d—A fire in a factory. Referring to a given period (say, one year), we assume
that a factory can be damaged, one or more times within the stated period, by fire.
In each occurrence, the amount of the related damage is random. Note that, in this
case, features of Case 3a (Damage/loss of a cargo), i.e., randomness of the loss, and
Case 3b (Disability benefits; one-year period), i.e., random number of occurrences,
are merged together.

In formal terms, we first define the random number N as the number of occurrences
of fire within the stated period. Then, we denote with Xk the damage caused by the
kth fire. Hence, the total random damage X is defined as follows:

X =
{

0 if N = 0

X1 + · · · + X N if N > 0
(1.2.14)

For each k, we have Xk > 0, as the case of a zero damage is expressed by
N = 0. Further, for each Xk , a minimum amount xmin and a maximum amount
xmax should be stated. In particular, the maximum amount could be the value of the
factory. However, it is unlikely that, in the case of multiple occurrence of fire, each
event completely destroys the factory (which, in the meanwhile, should have been
completely rebuilt). This aspect can, in principle, be dealt with by properly assigning
the probabilistic structure of the random numbers N , X1, . . . , X N .

As regards the random number N , we can assume in principle that the possible
outcomes are all the integer numbers 0, 1, 2, . . . . Conversely, we can assume a maxi-
mum (reasonable) outcome nmax, so that the possible outcomes are 0, 1, 2, . . . , nmax.
Note that, in Case 3b (Disability benefits; one-year period), the maximum number
of accidents is, of course, n.

In order to summarize the random quantities mentioned above using, for example,
the expected value, the probabilities related to the possible outcomes of these random
quantities should be available. In practice, as said above, we can just assume esti-
mations of the expected values, derived from previous (and similar) experiences. We
denote with E[N ] the expected value of the random number of occurrences (fire, in
this example) in the given period, E[Xk] the expected value of the damage resulting
from the kth occurrence, and E[X ] the expected value of the total damage.

If we assume appropriate hypotheses (which will be specified in Sect. 1.4.4), in
particular, if we assume that all the random amounts Xk have the same expected
value, namely

E[X1] = E[X2] = · · · = E[Xnmax ] (1.2.15)

then, we find that
E[X ] = E[X1]E[N ] (1.2.16)

Damages to the factory (and, in particular, to buildings, machineries, equipments,
and so on) constitute an example of direct losses caused by fire. Conversely, indirect
losses arise as a consequence of direct losses. For example, damages to the machiner-
ies may cause an indirect loss by reducing the normal production level, and hence by
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reducing the profit usually generated by the factory. Clearly, for each possible occur-
rence of fire, indirect losses should also be taken into account in a more realistic (and
complex) impact assessment. �

Case 3e—Car driver’s liability. A car driver may cause damage to the property
(for example, cars) of others, or injury to persons (pedestrians, or other car drivers).
Then, a third-party liability arises. Referring to a given period (say, one year), we
can define, as in Case 3d (A fire in a factory), the random number N as the number
of damages or injuries caused by the driver within the period. We still denote with
Xk the damage caused by the kth occurrence. Hence, the total random damage, X ,
in the given period, is defined by formula (1.2.14).

Note however that, in this case, maximum amounts cannot be stated, as the dam-
aged property (or the type and severity of the injury) is not predefined, whereas it
can be well defined in Case 3d (A fire in a factory). �

It is worth stressing that in Cases 2 (Possible loss with fixed amount) and 3a
(Damage/loss of a cargo) to 3e (Car driver’s liability), the presence of a risk can only
cause losses (or damages, liabilities, and so on). Hence, in these situations we refer
to pure risks.

1.2.5 Risks Inherent in the Individual Lifetime

Any individual, while managing his/her financial resources, should account for var-
ious risk sources. We now focus on those risks which are directly related to the
randomness of the individual lifetime.

The lifetime of an (adult) individual can be split into two economic periods, namely
the working period and the post-retirement period. During the working period, while
getting an income from his/her working activity, the individual should accumulate
resources in order to finance the post-retirement income. Thus, as regards the man-
agement of resources aiming to provide an income at old ages, the working period
corresponds to the accumulation phase, whereas the post-retirement period corre-
sponds to the decumulation phase, or payout phase (see Fig. 1.2).

In both the phases various risks affect the management of resources, among which
financial risks, arising from randomness in the investment yield, should not be disre-
garded. Further, some needs (and then the impact of risks) are related to the presence
of dependants. In what follows we focus on risks inherent in the individual lifetime,
singling out the following aspects:

• accumulation of savings to be used during the retirement period;
• risk of early death, and specifically the risk of dying during the working period;
• income during the post-retirement period.

Case 4a—The need for resources at retirement. An individual, during his/her
working period, is aware that at retirement he/she will need an amount, say S, to be
converted, at that time, into a sequence of periodic amounts, so that a regular income
will be available from retirement onwards.



10 1 Risks and Insurance

time

fu
nd

r

S

1 20
agex+rx

DECUMULATIONACCUMULATION

amount
"at risk"

annual
saving

annual
income

3 r-1 r+1

Fig. 1.2 Accumulation and decumulation periods

Assume the year as the time unit. Let r denote the retirement time. A saving
plan is designed, in order to find a suitable sequence of annual savings c1, c2 . . . , cr ,
which, during the working period, progressively constitute a fund. A financial insti-
tution manages the fund itself. Note that the amounts c1, c2 . . . , cr , deposited at
times 1, 2, . . . , r , respectively, are represented by the jumps (during the accumula-
tion period) in Fig. 1.2. The slope of each segment approximately represents the effect
of interest credited to the fund. The resulting piecewise profile shows the behavior
of the fund throughout the accumulation period.

In formal terms, the value, S, of the fund at time r is given by:

S = φ(c1, c2, . . . , cr ) (1.2.17)

where the function φ depends on the interests credited to the fund. In particular,
denoting with i an estimate of the (constant) annual interest rate credited to the
accumulated fund, we have

S = c1 (1 + i)r−1 + c2 (1 + i)r−2 + · · · + cr (1.2.18)

Assume that the actual sequence of deposits exactly follows the saving plan. If
the interest rate i is guaranteed by the financial institution, the accumulated value S
is certain. Thus, the investment risk is borne by the financial institution, whilst the
accumulation process is risk-free for the individual.

Conversely, if the financial institution does not provide the individual with any
guarantee, the accumulation process could result in an amount lower than S (given
by formula (1.2.18)), because of changes in interest rates, in the value of equities,
and so on. In particular note that, because of these possible changes, all the increases
in the accumulation profile between two consecutive jumps (see Fig. 1.2) should
be considered as random quantities. Then, also the final result of the accumulation
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process should be considered as a random amount. Hence, the risk is linked to the
conditions of the accumulation process, and, in particular, is driven by the guarantees
provided by the financial institution. �

Case 4b—Early death of the individual. Assume that the accumulation process
described in Case 4a (The need for resources at retirement) is in progress. However,
in the case of early death of the individual (namely, before the retirement time r ), the
accumulation process is interrupted (and the accumulated amount is lower than the
target amount S). Of course, the death can cause a financial distress to the individual’s
family, in particular, in the presence of one or more dependants. In practice, it is almost
impossible to quantify in monetary terms the impact of an early death, in particular,
because of the unknown value of the future income lost. Thus, the financial impact is
represented by a random amount. Assume that no estate, other than the accumulated
fund, is available to face family’s future needs, and that the dashed line in Fig. 1.2
represents a tentative estimation of the random impact. Then, at any point in time,
the amount resulting as the difference (if positive) between the estimated impact of
the early death and the accumulated fund is an amount “at risk”, because of the lack
of resources.

Note that this case generalizes the basic risk, namely Case 2 (Possible loss with
fixed amount), as a multi-year period of exposure to risk is allowed for. �

Case 4c—Outliving the resources available at retirement. Assume that a given
amount S is available to an individual at his/her retirement, presumably as the result
of an accumulation process (see Case 4a, and Fig. 1.2). Further, assume that now S
is the initial amount of a fund, managed by a financial institution which guarantees
a constant annual rate of interest i . Let t denote the time since retirement. In order to
get his/her post-retirement income, the retiree withdraws from the fund the amount
bt at time t (t = 1, 2, . . . ). The withdrawal process (or income drawdown process)
and the interest credited to the fund determine the time profile of the fund itself. Let
Ft denote the fund at time t , immediately after the withdrawal of the annual amount
bt . Clearly:

Ft = Ft−1(1 + i) − bt for t = 1, 2, . . . (1.2.19)

with F0 = S. Thus, the annual variation in the fund is given by

Ft − Ft−1 = Ft−1 i − bt for t = 1, 2, . . . (1.2.20)

Figure 1.3 illustrates the causes which determine the change in the fund amount
moving from time t − 1 to t ; the change is formally expressed by Eq. (1.2.20). Note
that, in the figure it is assumed that (as usual) bt > Ft−1 i .

The behavior of the fund obviously depends on the sequence of withdrawals
b1, b2, . . . . In particular, if for all t the annual withdrawal is equal to the annual
interest credited by the fund manager, that is:

bt = Ft−1 i (1.2.21)
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Fig. 1.3 Withdrawal process: annual variation in the fund

then, from (1.2.20) we immediately find:

Ft = S (1.2.22)

for all t , and hence a constant withdrawal

b = S i (1.2.23)

follows.
Conversely, if we assume a constant withdrawal greater than the annual interest

(as probably needed to obtain a reasonable post-retirement income), in particular,

b > S i (1.2.24)

then the withdrawal process will exhaust, sooner or later, the fund (of course, provided
that the retiree is still alive). Indeed, from Eq. (1.2.20) we have

Ft < Ft−1 for t = 1, 2, . . . (1.2.25)

and we can find a time tmax such that:

Ftmax ≥ 0 and Ftmax+1 < 0 (1.2.26)

Clearly, the exhaustion time tmax depends on the annual amount b (and the interest
rate i as well), as it can be easily understood from Eq. (1.2.20).



1.2 “Risk”: Looking for Definitions 13

The sequence of tmax constant annual withdrawals b (with tmax defined by condi-
tions (1.2.26), and possibly completed by the exhausting withdrawal at time tmax +1)
constitutes an annuity certain.

Example 1.2.1 Assume S = 1 000. Figure 1.4 illustrates the path of the fund when
i = 0.03 and for different annual amounts b. Conversely, Fig. 1.5 shows the path of
the fund for various interest rates i , assuming b = 100. ❑

It is interesting to compare the exhaustion time tmax with the lifetime of the retiree.
His/her age at retirement is x + r (see Fig. 1.2), for example, x + r = 65. Of course
the lifetime is a random number. Denote with Tx+r the remaining random lifetime for
a person age x + r . Let ω denote the maximum attainable age (or limiting age), say
ω = 110. Hence, Tx+r can take all values between 0 and ω−(x +r). If Tx+r < tmax,
then the balance of the fund at the time of death is available as a bequest. On the

Fig. 1.4 The fund
providing an annuity certain
(i = 0.03)
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contrary, if Tx+r > tmax there are Tx+r − tmax years with no possibility of withdrawal
(and hence no income).

In principle, the annual amount b (for a given interest rate i) could be chosen
by comparing the related number of possible withdrawals tmax with some quantity
which summarizes the remaining lifetime. For example, a typical value is provided
by the expected value of the remaining lifetime E[Tx+r ]. As an alternative, we can
focus on the remaining lifetime with the highest probability, i.e., the mode of the
remaining lifetime, Mode[Tx+r ]. Note that, in order to find E[Tx+r ] or Mode[Tx+r ],
assumptions about the probability distribution of the lifetime Tx+r are needed.

For example, the value b may be chosen, such that

tmax ≈ Mode[Tx+r ] (1.2.27)

Thus, with a high probability the exhaustion time will coincide with the remaining
lifetime. Notwithstanding, events like Tx+r > tmax, or Tx+r < tmax, may occur and
hence the retiree bears the risk originating from the randomness of his/her lifetime,
and, in particular, the risk of outliving his/her resources. Conversely, the choice of b
such that

tmax = ω − (x + r) (1.2.28)

obviously removes the risk of remaining alive with no withdrawal possibility, but
this choice would result in a very low amount b. �

1.3 Managing Risks

1.3.1 General Aspects

Although “insurance” is the main scope of this book, it is worth stressing that trans-
ferring risks via insurance contracts constitutes just one possibility within a very
wide range of actions which can be taken in order to manage risks.

Enterprise Risk Management (ERM) is the name of the discipline which focusses
on the analysis of the risks borne by a firm, a bank, a public institution, etc., and on
the actions which in particular aim at facing risks (the insurance transfer included).

Remark Several definitions of ERM have been proposed. The reader can refer, for example, to IAA
(2009) and citations therein. We only quote the definition proposed in 2002 by the Casualty Actuarial
Society (CAS) ERM Research Committee: “ERM is the discipline by which an organization in any
industry assesses, controls, exploits, finances, and monitors risks from all sources for the purpose
of increasing the organizations short- and long-term value to its stakeholders.”

The expression “risk management” is commonly referred to business entities;
Cases 3a (Damage/loss of a cargo) to 3d (A fire in a factory) provide examples
of risky situations involving such entities. Nevertheless, the ideas underlying the
analysis of risks and the choice of appropriate actions can, and in principle should,
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be applied also to individuals (or families), so that a personal risk management
framework can also be defined. Cases 3e (Car driver’s liability), 4a (The need for
resources at retirement), 4b (Early death of an individual), and 4c (Outliving the
resources available at retirement) constitute examples of situations to be dealt with
in this context.

In the following sections, some basic ideas about risk management are introduced.
Obviously, risks and actions to be taken to manage the risks themselves depend, to a
large extent, on the particular business involved (or family needs concerned). So, a
bank bears some types of risks connected to its specific activity, whereas other risks
affect an industry, or an aviation company, and so on. In our presentation, we only
address some general issues, without focussing on technical details concerning the
various fields of activity.

1.3.2 The Risk Management (RM) Process

The implementation of risk management principles takes place via the risk manage-
ment (RM) process, which basically consists of the following phases (see Fig. 1.6):

1. Objective setting. Any organization aims at achieving given targets. Important
targets are listed below.

• Profit. According to an accounting perspective, profit can be defined as the dif-
ference between revenues and costs, that is the “accounting earnings”. While
reducing the negative impact of risks on various quantities (e.g., cash flows,
assets, etc.) is an obvious target of the RM process (see “risk mitigation”), a
reasonable amount of risk appetite is needed in any organization which aims
at an appropriate potential for profit.

• Value creation. A number of different meanings can be attributed to the word
“value” and hence to the expression “value creation”, also depending on the
context and the stakeholders referred to, e.g., the clients, the shareholders, etc.
When referring to the shareholders, value creation can be meant as synonym

Risk 
identification

Risk 
assessment

Analysis 
of actionsMonitoring Choice  

of actions

Impact 
assessment

Objective  
setting 

Fig. 1.6 The risk management process
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to (positive) “economic earnings”. Economic earnings can be defined as the
difference between the revenues and the costs associated to all of the produc-
tion factors, hence including the cost of the shareholders’ capital invested in
the business. The shareholders’ perspective will be considered in Sect. 2.3.9,
dealing with value creation when managing a portfolio of insured risks.

• Risk mitigation. Risk mitigation aims at reducing the expected total impact
(loss) of a risk. In particular, risk mitigation actions tend to lower the expected
number of occurrences, or to reduce the expected severity of each loss, or
both. This issue will be addressed in Sect. 1.3.5.

• Solvency. Commonly, the term “solvency” is used to denote the capability
of an organization to pay all the amounts when these fall due. More specific
definitions of solvency (in probabilistic terms) are needed when referring to
the insurance activity. We will pay special attention to the insurer’s solvency
in Sects. 2.3.8 and 2.7.3.

• Market share. Keeping and possibly increasing the market share is an obvious
target for all the organizations which sell products. Creating value for the
clients can improve the market share.

2. Risk identification. In this phase the risk causes, i.e., the causes of potential losses
suffered by the organization (the business, or the family, or the individual) are
singled out.

3. Risk assessment. Risk causes are expressed in quantitative terms via appropriate
stochastic models (viz probability distributions).

4. Impact assessment. The impact of risk causes on results of interest (cash flows,
assets, profits, value creation, etc.) is quantified in terms of probability distri-
butions of the results themselves, and related typical values (expected values,
variances, etc.).

5. Analysis of actions. Available RM actions are listed, and costs and benefits related
to available actions (pricing of the products, risk transfer via insurance, capital
allocation, etc.) are compared.

6. Choice of actions. Usually an appropriate mix of actions is chosen (e.g., combin-
ing risk transfer and capital allocation).

7. Monitoring. This phase should involve both the results achieved by the organiza-
tion and the assumptions about the scenario (e.g., behavior of the capital markets,
inflation rate, tax legislation, etc.) adopted when choosing RM actions.

Phases 2 to 6 will be described in more detail in the following sections, also
referring to cases described in Sect. 1.2.

It should be noted that the RM process is a “never-ending” process. In fact, the
monitoring phase aims at checking the results of the actions, and possibly suggesting
a revision of the previously performed phases.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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1.3.3 Risk Identification

The risk identification phase aims to single out the potential loss exposures of an
organization (the business, or the family, or the individual). Causes of risks concerned
depend on the particular organization under analysis, as we can understand looking
at the cases presented in Sect. 1.2.

For example, in Cases 1a and 1b risk causes should be identified in the economic
and financial scenarios in which the transactions take place. In Case 3a (damage/loss
of a cargo) risks arise from the specific type of transport (e.g., weather conditions in
case of maritime transport).

Some risks are borne by rather broad categories of activity. For example, any
factory bears risks as fire (Case 3d), liability toward workers arising from possible
accidents (Cases 3b and 3c), liability toward the population arising from potential
air and water pollution, and so on. Nevertheless, it is apparent that the specific risk
causes (e.g., of a fire) are strictly related to the particular activity performed.

Risks addressed in Cases 4a, b, and c obviously arise from the individual lifetime,
but also from the dynamics of the capital market. The types (and amounts) of risks
actually borne by an individual depend on the possible transfer of the related financial
consequences to a financial intermediary (an insurer, a pension fund, etc.).

1.3.4 Risk Assessment and Impact Assessment

The ultimate purpose of the two assessment phases, i.e., the risk assessment phase
and the impact assessment phase, is to quantify in monetary terms the consequences
of the risks borne by the organization. In most of the (simple) cases presented in
Sect. 1.2 a rigorous separation of risk and impact assessment is however difficult.
This can basically be explained as follows:

• the impact of a risk is simply expressed, in most cases, in terms of a loss (or a cost,
or a liability), disregarding further impacts on results such as cash flows, profits,
value creation, etc.;

• direct losses are only considered, whereas indirect losses are disregarded; of
course, also indirect losses should be accounted for, given their impact on results
such as profits, value creation, etc., hence making more complex the impact assess-
ment phase.

Actually, the probabilistic models we will introduce in Sect. 1.4 encompass both
the assessment phases, directly focussing, for example, on the potential number and
severity of losses.

In the risk management practice, frequently the average number (or the frequency)
and the average severity of losses are only estimated. A more accurate (and com-
plex) approach to risk and impact assessment should involve the use of appropriate
probabilistic models, in particular, describing in quantitative terms the risk causes
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(risk assessment), and the random number of cases of loss and the random amount
(namely, the severity) of each potential loss (impact assessment). Some typical val-
ues (expected value, variance, mode, and so on) should be focussed on, as these can
help in comparing various situations and then choosing actions (see, in particular,
Sect. 1.3.6).

Moving from risk assessment to impact assessment can be a challenging step when
complex realities are addressed. Indeed, probability distributions related to the risk
causes (the input) must be “transformed” into probability distributions describing
the impacts (the output). This can be, for example, the case of a portfolio of insured
risks, as we will see in Sects. 2.3 and 2.7 (yet referring to a simple insurance cover),
where impact of risks on cash flows, profits, solvency level, need for shareholders’
capital allocation, etc., will be analyzed.

More complex situations concern life insurance portfolios, for which:

• risk causes are given by mortality among the insureds, yield on investments,
expenses attributed to the portfolio, etc.;

• impacts again concern cash flows, profits, solvency level, need for shareholders’
capital allocation, etc.

1.3.5 Risk Management Actions

The analysis of actions aims at singling out what RM actions are available to face
risks and relevant impacts, and to compare costs and benefits related to the available
actions.

The RM actions can be classified as follows:

1. Loss control:

a. loss prevention:
b. loss reduction;
c. risk avoidance.

2. Loss financing:

a. retention;
b. insurance;
c. hedging;
d. other contractual risk transfers.

3. Internal risk reduction:

a. diversification;
b. investment in information.

In order to illustrate various RM actions, we can refer to Case 3d (A fire in a
factory) presented in Sect. 1.2.4. Loss control actions (also called risk control actions,
or risk mitigation actions) generally aim at reducing the expected total loss E[X ]. In
particular, actions which tend to lower the expected number of occurrences, E[N ],

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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are known as loss prevention methods, whereas actions aiming to reduce the expected
severity of each damage, E[Xk], k = 1, 2, . . . , N , are called loss reduction methods.

For example, appropriate electric equipments can contribute in reducing the
expected number of fire occurrences (loss prevention), whereas fire protection mea-
sures (e.g., doors) can lower the risk of fire propagation and hence the expected
amount of damages (loss reduction).

Loss control can also be realized by reducing the level of risky activities, in
particular by shifting to less risky product lines. Clearly, the cost of this action is
given by a reduction in the profits produced by the risky activities. The limit case
is given by the total elimination of these activities: this action is usually called risk
avoidance.

The expression loss financing (sometimes risk financing) denotes a wide range of
methods which aim at obtaining financial resources to cover possible losses, anyhow
unavoidable.

First, the organization can choose the retention of the obligation to pay losses.
Retention is often called self-insurance. Instead of retaining a risk, the organization
can transfer it to another organization. The usual transfer consists in the insurance of
the risk, and thus involves, as the counterpart, an insurance company. Nevertheless,
other risk transfer arrangements can be conceived. More details on this topic are
provided in Sects. 1.3.6 and 1.3.7.

Hedging is, in particular, based on the use of financial derivatives, such as futures,
forwards, swaps, options, and so on. These derivatives can be used to offset potential
losses caused by changes in commodity prices, interest rates, currency exchange
rates, and so on. For example, a factory which uses oil in the production process is
exposed to losses due to unanticipated increases in the oil price. This risk can be
hedged by entering into a forward contract, according to which the oil producer must
provide the user with a specified quantity of oil on a specified date at a price stated
in the contract. A more detailed description of hedging strategies can be found in
Sect. 1.3.9.

Finally, we turn to actions aiming at internal risk reduction. Diversification typi-
cally relates to investment strategies and related risks, and consists in investing rel-
atively small amounts of wealth in a number of different stocks, rather than putting
all of the wealth into one stock. Diversification makes the investment results not
totally depending on the economic results of just one company, and hence aims at
the reduction of investment risks.

Investment in information is the second major form of internal risk reduction.
Appropriate investments can improve the “quality” of estimates and forecasts. A
reduced variability around expected values follows, so that more accurate actions of,
for example, loss financing can be performed.

The analysis of alternative actions must be followed by the choice of actions to
be implemented. Actions in risk management are not mutually exclusive, so that the
strategy actually adopted usually consists of an appropriate mix of several actions. For
example, loss prevention and loss reduction can be accompanied by an appropriate
insurance transfer, which, in its turn, will be less expensive if an effective loss control
can be proved to the insurer.
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1.3.6 Self-insurance versus Insurance

The results achieved throughout the risk and impact assessment phases should pro-
vide the risk manager with data supporting important decisions, and, in particular:

1. what (pure) risks can be retained and what risks should be transferred;
2. how to finance potential losses produced by the retained risks;
3. what kind of risk transfer should be chosen.

It should be stressed that the expression “risk transfer” must obviously be under-
stood as referred to the transfer of the possible monetary consequences of the risk
(that is, the related impact) and not to a “physical” transfer of the risk itself to another
organization.

As regards point 1, basic guidelines for the decision can follow a frequency–
severity logic as sketched in Fig. 1.7. Risks generating potential losses with low
severity (i.e., losses which can be faced thanks to the financial capacity of the firm)
can be retained. In particular, as regards point 2, if the frequency of occurrence is low,
the losses do not constitute an important concern and thus can be financed either via
internal resources, or via external funds, i.e., borrowing money. Internal resources
consist of current cash flows produced by ordinary activities, and shareholders’ cap-
ital (namely, the assets exceeding the liabilities). A high frequency of losses, on the
contrary, suggests funding in advance via specific capital allocation.

Risks generating potential losses with a low frequency but a high severity (and
then a high impact on the firm) should be transferred, in particular, to an insurance
company. Activities implying potential losses with high frequency and high severity
should be avoided, because of the possible dramatic costs, likely to lead to bankruptcy.

As regards point 3, we note that the term “transfer” should be understood in a
rather broad sense: first, it simply denotes “not a full retention” of the risk; second,
various counterparts, i.e., agents taking (part of) the risk, can be involved in this
purpose. We now focus on the first aspect, whereas the second one will be addressed
in Sect. 1.3.7.

Fig. 1.7 How to manage
risks according to their
possible impact

Severity 

Frequency 

LOW 

LOW 

HIGH 

HIGH 

 Retention 
 (unfunded)    Transfer 

Risk 
avoidance 

  Retention 
  (funded) 
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Risks can be partially transferred and, more precisely, only the heaviest part of a
potential loss can be transferred, whereas amounts, which can be faced thanks to the
financial capacity of the business, can be retained.

In particular, the rationale of a risk transfer involving an insurer is the splitting of
losses into two parts, one retained by the insured and the other paid by the insurer.
In formal terms, and still referring to Case 3d (A fire in a factory), the random loss
for the kth occurrence is split as follows:

Xk = X [ret]
k + X [transf]

k (1.3.1)

The random amount paid by the insurer, X [transf]
k , is determined according to the

policy conditions stated in the insurance contract, and can be usually represented as
a function of the loss Xk , namely

X [transf]
k = ψ(Xk) (1.3.2)

An example of the function ψ is provided by a “proportional” retention, also called
fixed-percentage deductible. In this case, we have

X [ret]
k = θ Xk (1.3.3a)

X [transf]
k = (1 − θ) Xk (1.3.3b)

where θ is a given percentage. See Fig. 1.8.
Another example of the function ψ is provided by the fixed-amount deductible,

which is a condition included in a number of insurance contracts. When a fixed-
amount deductible d works, any loss under the amount d is fully retained, whilst
losses higher than d are transferred only for the amount exceeding d. Thus

X [ret]
k = min{Xk, d} (1.3.4a)

X [transf]
k = max{Xk − d, 0} (1.3.4b)

0 Xk

X[ret]
k

Xk

(1- )Xk

0

X[transf]

Xk

k

(1- )Xk

Xk

(a) (b)

Fig. 1.8 An example of risk transfer: the fixed-percentage deductible
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0 Xk

X[ret]

d

d

k

d0

X[transf]

Xk

k

d

(a) (b)

Fig. 1.9 An example of risk transfer: the fixed-amount deductible

See Fig. 1.9.
The risk transfer based on a fixed-amount deductible can be more interesting, for

various reasons. In particular, we note what follows:

• small losses do not originate insurer’s payments, thus saving the related costs;
• for large losses, the insurer pays the whole amount net of the deductible (provided

that no upper limit is stated).

Note that, on the contrary, if a fixed-percentage deductible is stated, the insurer
intervenes also for small losses, whereas, in the case of large losses, an important
loss amount is suffered by the insured.

Other transfer arrangements, of great practical interest, will be described in
Chap. 9.

1.3.7 Counterparts in a Risk Transfer Deal

As regards the second aspect, namely the counterparts in a risk transfer arrange-
ment, we note what follows. The usual risk transfer involves, as the counterpart, an
insurance company (or even more insurance companies). In its turn, an insurance
company can transfer risks via appropriate reinsurance arrangements. In the practice
of risk management, a deep analysis of all the available insurance (or reinsurance)
opportunities should be performed. Convenient insurance covers should be chosen
for each type of risk (fire, third-party liability, and so on) borne by the organiza-
tion. The ultimate result is the construction of an insurance programme, possibly
involving several insurance companies.

Despite the prominent importance of insurance (and reinsurance) arrangements,
other transfer solutions are feasible. For example, large organizations (and, in par-
ticular, insurance and reinsurance companies) can transfer risks to capital markets
(see below).

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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A particular form of risk transfer relies on the so-called captive insurers. Some
large corporations have established their own insurance companies, namely the “cap-
tives”, to fulfill insurance requirements of various companies inside the group. The
captive insurer can be interpreted as a profit center within the group. It is worth
noting that an insurance company cannot be regarded as a captive simply because it
is completely owned by one or more companies within the group. Conversely, the
discriminating feature is whether the majority of its insurance business comes from
the companies of the group, rather than from the market or companies outside the
group.

Another solution to risk transfer problems is provided by pools which share the
same type of risks (without resorting to an insurance company). Examples can be
found in professional associations which build up pools to manage specific types of
risk, like those related to medical expenses. It should be noted that, as these pools
do not imply the existence of an insurance company, their establishment and scope
are subject to constraints stated by the current legislation.

Finally, we mention the capital market as a possible counterpart in a risk transfer
deal. Risk transfers to capital markets, realized by issuing specific bonds, can be
placed in the framework of Alternative Risk Transfers (shortly ARTs). This topic is
briefly addressed in Sect. 1.3.9, whereas a deeper analysis is provided in Sect. 2.6.

1.3.8 Monitoring and the Risk Management Cycle

The choice of actions is the fifth phase of the risk management process, and, in its
turn, this phase originates from the previous four phases (see Fig. 1.6). The results
consequently obtained must be carefully monitored. The monitoring phase has two
main objectives:

• checking the effectiveness of the undertaken actions;
• determining whether changes in the scenario suggest novel solutions.

Thus, as clearly appears from Fig. 1.6, monitoring is not the “final” phase of the RM
process: indeed, no final phase exists because, after monitoring, the risk management
process starts again, according to an appropriate scheduling, with the reidentification
of risks in a possibly changed scenario, and so on. Hence, the risk management
process is actually a never-ending “cycle”.

1.3.9 More on Hedging

A particular hedging tool, i.e., the forward contract, has been addressed in Sect. 1.3.5.
However, in the Risk Management language the term “hedging” is usually attributed
a broader meaning, that we are going to illustrate.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Table 1.4 Hedging S1 S2

Outflow X (↑) X (↓)

1. Hedging flow

(a) Inflow Y (↑) Y (↓)

(b) Outflow Z (↓) Z (↑)

2. Replacing flow w w

Consider a random outflow X (a cost, an expense, a loss, etc.), whose outcome
can be either lower or higher than an amount chosen as the “benchmark” (e.g., the
expected value of X , or its modal value, or an amount which can be met thanks
to available resources). Values higher than the benchmark, denoted in Table 1.4 by
X (↑), are taken by X if scenario S1 occurs, whereas lower values, denoted by X (↓),
are taken by X if scenario S2 occurs.

To hedge the risk represented by X (↑), two basic approaches can be adopted,
which are described in what follows:

1. Offset the random outflow X with a hedging random flow, such that the sum of
the values of the two flows is either certain or, at least, belonging to a given range;
this approach can be implemented as follows:

(a) the hedging flow Y has a sign opposite to the sign of X (and hence Y is an
inflow), and is larger the larger is X ;

(b) the hedging flow Z has the same sign of X (and hence Z is an outflow) and
is smaller the larger is X .

2. Replace the random outflow X with an outflow-certain w.

The above approaches are summarized in Table 1.4. Some examples follow.
Arrangement 1(a) can be implemented via insurance. A (large) loss X is offset

by the benefit Y paid by the insurer (an indemnity, or an expense reimbursement).
In general, we have Y = �(X), with Y ≤ X ; see Sect. 1.3.6 (where the notation
X [transf] is used instead of Y ).

As regards Risk Management in insurance (and reinsurance), an example of
arrangement 1(b) is provided in the framework of Alternative Risk Transfers (ARTs),
by insurance-linked securities (ILS) issued by an insurer (more commonly by a rein-
surer), in particular, to hedge the impact of catastrophic events (see Sect. 2.6). The
payoff, Z (in terms of either coupons or principal at maturity, or both), of this type of
security is lower when the benefits paid by the insurer (reinsurer) are higher. Mortality
bonds, which are described in Sect. 2.6.4, belong to the category of insurance-linked
securities.

Again as regards Risk Management in insurance, arrangement 1(b) can also be a
consequence of a particular business structure. For example, an insurer selling both
contracts providing benefit in the case of survival (e.g., life annuities) and contracts
paying benefits in the case of death can “automatically” hedge, to some extent,

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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unexpected changes in mortality. Higher amounts X paid as life annuity benefits,
due to an unanticipated raise in longevity, can be offset by smaller amounts Z paid
as death benefits, and vice versa. Such a hedging arrangement, as implied by the
business structure and not relying on “external” hedging flows, is called natural
hedging.

To implement arrangement 2, the owner of the risky outflow X has to sell the
outflow itself while buying an outflow w with a sure value. Hence, outflow w replaces
outflow X . An example is given by the forward contract referred to in Sect. 1.3.5.
Another example is provided by swap contracts, according to which, for example,
a sequence of random interest rates is replaced by a constant interest rate, that is a
sequence with a given flat profile over time.

Of course, whatever the arrangement adopted (but the natural hedging), a cost
has to be paid by the owner of the risky outflow X , either in order to launch the
hedging flow or to replace X by w, and hence transfer (part of) the risk inherent in
X . It should also be noted that, if arrangement 2 is implemented, the owner of the
random outflow must waive the “acceptable” outcomes of X (that is, X (↓)).

1.4 Risk and Impact Assessment: Some Models

1.4.1 Some Preliminary Ideas

As already mentioned in Sect. 1.3.4, the risk assessment phase and the impact assess-
ment phase mainly aim at expressing in quantitative terms the consequences of the
risks on significative target results (monetary outgoes, profits, and so on). To this
regard, the following points should be stressed.

• The impact of each risk is, because of the nature of the risk itself, random.
• Although useful, the assessment of just the minimum and the maximum impact is

clearly insufficient for operational purposes.
• Typical values, like measures of “location” and “dispersion”, are much more useful

in general, together with probabilities of events like “the result is worse than a given
benchmark”, or “the loss is higher than a stated (critical) threshold”.

• Typical values, for example, the expected value or the mode (typical measures of
location) and the variance (a measure of dispersion), are particularly useful for the
following purposes:

– comparisons among various risky situations, and related decisions, for exam-
ple, choices between risk retention and risk transfer, e.g., via insurance (see
Sect. 1.3.6);

– in the case of retention, decisions about loss financing, either via specific capital
allocation or via current assets and cash flows (again, see Sect. 1.3.6);

– from the insurer’s point of view, “pricing” of risky situations via an appropriate
toolkit for premium calculation.
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Typical values could be drawn from previous (and analogous) experiences. Sim-
ilarly, probabilities like those mentioned above, could also be estimated from fre-
quency data. Notwithstanding, the construction of a “complete” probabilistic model
(underpinned by statistical experience), also including convenient hypotheses (for
example, correlation versus independence among the various random inputs of the
model itself), is the most appropriate approach to a sound risk assessment.

Of course, the complexity of a probabilistic model strictly depends on the specific
risk and the result dealt with (as we will see in the following sections). It is worth
noting that, anyhow, a model should constitute a simplified representation of the
reality, and hence it should include all the elements which have an important role
in the assessment process, conversely disregarding those elements which (at least
according to the opinions of the modeler and the decision maker) do not sensibly
affect the results.

1.4.2 A Very Basic Model

We refer to Case 2 (Possible loss with fixed amount), presented in Sect. 1.2.3. The
random loss is expressed, in financial terms, by (1.2.1). Then, the construction of the
probabilistic model for the risk assessment simply requires to specify the probability
of the event E . Let

p = P[E ] (1.4.1)

denote this probability. The expected value of the potential loss X , i.e., the impact,
is then given by

E[X ] = x p (1.4.2)

and the variance by
Var[X ] = x2 p (1 − p) (1.4.3)

The standard deviation, σ [X ], is defined as the square root of the variance; hence:

σ [X ] = √
Var[X ] = x

√
p (1 − p) (1.4.4)

Remark The probability distribution of the indicator of the event E (see the Remark in Sect. 1.2.3)

|E | =
{

1 with probability p

0 with probability 1 − p
(1.4.5)

is called the Bernoulli distribution, and denoted by Bern(p). The random variable X = x |E | is
then called Bernoulli risk.
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1.4.3 Random Number of Events and Random Amounts

We first refer to Case 3a (Damage/loss of a cargo), described in Sect. 1.2.4. A proba-
bility distribution should be assigned to the random amount X , describing the severity
of the loss. The distribution may be of a discrete or a continuous type. The latter case,
rather common in the actuarial practice of non-life insurance, will be dealt with in
Chap. 9. In the former case, a set of possible outcomes must be conveniently chosen.
We denote with x0 = 0, x1, . . . , xmax the possible outcomes of the random amount
X . We recall that the outcome x0 = 0 means the absence of accident and hence the
absence of damage. Then, the probability distribution is specified by assigning the
following probabilities:

ph = P[X = xh]; h = 0, 1, . . . , m (1.4.6)

where xm = xmax. The obvious constraint is
∑m

h=0 ph = 1. The expected value is
then given by

E[X ] =
m∑

h=0

xh ph (1.4.7)

and the variance by

Var[X ] =
m∑

h=0

(xh − E[X ])2 ph (1.4.8)

Of course, σ [X ] = √
Var[X ].

Example 1.4.1 A possible accident causes a loss, whose amount depends on the
severity of the accident itself. We assume that the outcomes of the random loss X
are:

0, 100, 200, 300, 400, 500

with the following probabilities

0.99, 0.002, 0.004, 0.002, 0.001, 0.001

The outcome X = 0 denotes that the accident does not occur. Then:

E[X ] = 2.5

Var[X ] = 763.76

σ [X ] = 27.64

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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Assume now that an accident (whatever its severity may be) does occur. The outcomes
of the random loss X are now restricted to the positive values, namely

100, 200, 300, 400, 500

Of course, the sum of the relevant probabilities must be equal to one. Hence, keeping
their “relative” values, we have:

0.2, 0.4, 0.2, 0.1, 0.1

From these probabilities, we can calculate the expected value of the loss under the
hypothesis that an accident occurs:

x̄ = 250

The expected value of the loss (whether an accident occurs or not) can be expressed
as follows:

E[X ] = x̄ × P[accident] = 250 × 0.01 = 2.5

❑

What has emerged from Example 1.4.1 can be formalized as follows. The prob-
ability p of an accident (whatever its severity may be) can be expressed, according
to the notation adopted in Sect. 1.2.4, as

p = P[E ] = P[E1 ∪ E2 ∪ · · · ∪ Em] (1.4.9)

and is clearly given by

p =
m∑

h=1

ph (1.4.10)

whereas
p0 = 1 − p (1.4.11)

According to the theorem of conditional probabilities, we have, for h = 1, 2, . . . , m:

P[X = xh] = P[X = xh |E ]P[E ] (1.4.12)

Then, the probability distribution of the amount of the loss, conditional on the occur-
rence of an accident, is the following one:

P[X = xh |E ] = P[X = xh]
P[E ] = ph

p
; h = 1, 2, . . . , m (1.4.13)
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We can define the expected value of the loss, conditional on the occurrence of an
accident:

x̄ = E[X |E ] = 1

p

m∑
h=1

xh ph (1.4.14)

Note that, as x0 = 0, we have:

E[X |E ]P[E ] =
m∑

h=1

xh ph =
m∑

h=0

xh ph = E[X ] (1.4.15)

Thus, the unconditional expected value can be expressed as follows:

E[X ] = E[X |E ]P[E ] = x̄ p (1.4.16)

Remark 1 The factorization of the expected value E[X ] of the loss, as shown by formula (1.4.16),
reflects the format in which statistical data are commonly available. Namely, the quantity x̄ can
be estimated relying on the observed mean damage per accident, whereas the probability p can be
estimated on the basis of the frequency of accident.

We now move to Case 3b (Disability benefits; one-year period). Assuming that
the same benefit C is paid, in the case of disability, to anyone of the n employees, then
the risky situation is completely described by the random number, K , of accidents
implying disability. As the possible outcomes of K are 0, 1, . . . , n, a finite probability
distribution should be assigned. In particular, if we assume that

1. for each employee the probability of accident is p;
2. the accidents are independent events;

then, the probability distribution of K is a binomial distribution with parameters n,
p, shortly

K ∼ Bin(n, p) (1.4.17)

Hence,

πk = P[K = k] =
(

n

k

)
pk (1 − p)n−k; k = 0, 1, . . . , n (1.4.18)

Remark 2 We note that, thanks to assumptions 1 and 2, the random variable K can be interpreted as
the sum of n independent indicators, each one with Bernoulli distribution Bern(p) (see the Remark
in Sect. 1.4.2).

Remark 3 Assumption 2 may be controversial, as events like accidents occurring, for example,
inside a factory could be considered positively correlated.
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According to the probability distribution (1.4.18), we have:

E[K ] = n p (1.4.19)

Var[K ] = n p (1 − p) (1.4.20)

σ [K ] = √
n p (1 − p) (1.4.21)

As regards the total benefit, X , paid by the employer, i.e. the financial impact, we
obviously have:

P[X = k C] = P[K = k] = πk; k = 0, 1, . . . , n (1.4.22)

and then:

E[X ] = C E[K ] = C n p (1.4.23)

Var[X ] = C2
Var[K ] = C2 n p (1 − p) (1.4.24)

σ [X ] = C
√

n p (1 − p) (1.4.25)

From (1.4.18) and (1.4.22) we have, in particular:

P[X = 0] = P[K = 0] = (1 − p)n (1.4.26)

Thus, the probability of no accident, and hence of zero payment, decreases as n
increases.

It is worth stressing that formulae (1.4.19) and (1.4.23) for the expected values
do not require the independence hypothesis.

As noted in Sect. 1.2.4, in Case 3b the risk borne by the employer is actually a pool
of n individual risks. The size of the pool plays an important role in the riskiness of
the pool itself, as we will see in Example 1.4.2. For a better understanding of the role
of n, a relative measure of “risk” can be defined, namely the coefficient of variation,
or risk index:

CV[X ] = σ [X ]
E[X ] (1.4.27)

From (1.4.23) and (1.4.25) it follows that:

CV[X ] =
√

1 − p

n p
(1.4.28)

An extensive discussion about the meaning of the coefficient of variation and the
relevant applications will follow in Sects. 1.5.2, 1.6.1, and 2.3.4.

Example 1.4.2 A benefit C = 1 000 is paid in the case of permanent disability to
anyone of the employees of a firm. The probability of an accident causing permanent

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Table 1.5 Disability benefits (one-year period)

n = 10 n = 100 n = 1 000

E[K ] 0.05 0.5 5

Var[K ] 0.04975 0.4975 4.975

σ [K ] 0.22305 0.70534 2.23047

E[X ] 50 500 5 000

Var[X ] 49 750 497 500 4 975 000

σ [X ] 223.047 705.34 2 230.47

CV[X ] 4.4609 1.41068 0.44609

P[X = 0] = P[K = 0] 0.99510 = 0.9511 0.995100 = 0.6058 0.9951000 = 0.0067

P[X > 0] = P[K > 0] 1 − 0.9511 = 0.0489 1 − 0.6058 = 0.3942 1 − 0.6058 = 0.9933

E[X | X > 0] 50 1
0.0489 = 1 022.71 500 1

0.3942 = 1 268.30 5 000 1
0.9933 =5 033.49

disability is p = 0.005 for each employee. The accidents are assumed to be inde-
pendent events. Table 1.5 shows various results in the cases n = 10, n = 100, and
n = 1 000, respectively. Note that E[X | X > 0] is the expected value of the random
payment conditional on the occurrence of at least one accident; see the analogy with
the expected value in (1.4.14).

The role of the pool size can be perceived by looking at various quantities as
functions of n. In particular, we note what follows:

• When n is “small” (n = 10 or n = 100, in our example), the expected value E[K ]
does not correspond to any possible outcome of the random number K . Then, an
interpretation can be as follows: on average, an accident every 1

E[K ] years (that is,
every 20 years or every 2 years, respectively) will occur.

• The expected value and variance of both K and X increase linearly as n increases
(as it results from Eqs. (1.4.19), (1.4.20), (1.4.23), and (1.4.24)), whereas the stan-
dard deviation increases proportionally to

√
n (see Eqs. (1.4.21) and (1.4.25)). It

follows that the relative riskiness, expressed by CV[X ] as regards the total benefit,
decreases as n increases.

• The probability of no accident is very high when n is small, while it is very low
for large values of n. Note also the consequent variation of E[X | X > 0].

❑

We now refer to the problems described as Case 3d (A fire in a factory) and
Case 3e (Car driver’s liability) which, as already noted, combine features of Cases 3a
(Damage/loss of a cargo) and 3b (Disability benefits; one-year period). A number
of modeling alternatives are available for these problems. While a detailed analysis
of these issues will be presented in Chap. 9, here we just focus on a rather simple
modeling choice.

Assume the same probability distribution for all the random amounts, X1, X2, . . . ,

X N , describing the damages (or liabilities). As for Case 3a (Damage/loss of a cargo),
the distribution may be of a discrete or a continuous type. We assume the discrete
setting, and denote with x1, x2, . . . , xm the possible outcomes for every random

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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amount Xk , k = 1, 2, . . . , N . Then, the common probability distribution (that is, the
same distribution for k = 1, 2, . . . , N ) is specified by assigning the probabilities

fh = P[Xk = xh]; h = 1, 2, . . . , m (1.4.29)

The expected value x̄ = E[Xk], k = 1, 2, . . . , N , is then given by:

x̄ = E[Xk] =
m∑

h=1

xh fh (1.4.30)

and the variance by:

Var[Xk] =
m∑

h=1

(xh − x̄)2 fh (1.4.31)

Note that the probabilities (1.4.29) correspond to the conditional probabilities
(1.4.13) in Case 3a; similarly, the expected value (1.4.30) corresponds to the condi-
tional expected value (1.4.14). The case of no accident and hence damage equal to 0
is now accounted for by the outcome N = 0 of the random number of accidents.

As regards the random number N , a discrete distribution should obviously be
assigned. In particular, a finite distribution requires the choice of a reasonable max-
imum outcome nmax. As an alternative, the Poisson distribution is frequently used,
as we will see in Chap. 9. In the finite setting, the following probabilities must be
assigned:

πh = P[N = h]; h = 0, 1, . . . , nmax (1.4.32)

and then the expected value, n̄, and the variance can be derived as follows:

n̄ = E[N ] =
nmax∑
h=0

h πh (1.4.33)

Var[N ] =
nmax∑
h=0

(h − n̄)2 πh (1.4.34)

The probability distribution of the total loss X , defined by (1.2.14), and the related
typical values are of great interest, as X represents the random cost referred to
the stated period (say, one year). In Sect. 1.4.4 we will describe some assumptions
commonly adopted in insurance technique, which in particular allow us to express
the expected value of the total loss, E[X ], by using formula (1.2.16).

Example 1.4.3 Assume that a factory can be damaged by fire, possibly more times
within a year. As regards the random damages, Xk , k = 1, 2, . . . , assume m = 5
and the following possible outcomes:

x1 = 100; x2 = 200; x3 = 300; x4 = 400; x5 = 500

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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with the related probabilities

f1 = 0.2; f2 = 0.4; f3 = 0.2; f4 = 0.1; f5 = 0.1

We find, for k = 1, 2, . . . :
x̄ = E[Xk] = 250

For the random number N , assume nmax = 4, and the following probabilities:

π0 = 0.9934; π1 = 0.0040; π2 = 0.0020; π3 = 0.0004; π4 = 0.0002

We obtain
n̄ = E[N ] = 0.01

and (under the appropriate hypotheses)

E[X ] = n̄ x̄ = 2.5

We note that the expected value E[X ] coincides with that found in Example 1.4.1.
Notwithstanding, different interpretations should be given to the two results, because
of different structures of the two problems. ❑

1.4.4 Random Sums: A Critical Assumption

The total random damage X , defined by (1.2.14), is a random sum, since the number
N of terms in the summation as well as the individual values of the terms are random
variables. The probability distribution, the expected value, and the variance of X are
of great practical interest, both in risk assessment in general and in pricing insur-
ance products, in particular. However, probabilistic assumptions about the random
variables N and Xk , k = 1, 2, . . . are needed in order to get to workable calculation
procedures. We now describe a set of assumptions, which are commonly adopted for
calculating, in particular, the expected value E[X ].

Assume that

1. the random variables Xk are independent of the random number N ;
2. whatever the outcome n of N , the random variables X1, X2, . . . , Xn

a. are mutually independent;
b. are identically distributed (and hence with a common expected value, say

E[X1]).
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We have, in general:

E[X ] =
nmax∑
h=0

πh E[X | N = h] =
nmax∑
h=1

πh E[X | N = h] =
nmax∑
h=1

πh

⎡
⎣ h∑

i=1

E[Xi | N = h]
⎤
⎦

(1.4.35)

Thanks to assumption 1, we have:

E[Xi | N = h] = E[Xi ] for all i (1.4.36)

and thanks to assumption 2b, we obtain

E[Xi ] = E[X1] for all i (1.4.37)

and finally,
h∑

i=1

E[Xi | N = h] = h E[X1] (1.4.38)

Then, we obtain

E[X ] =
nmax∑
h=1

πh h E[X1] = E[X1]E[N ] (1.4.39)

Although frequently adopted in the insurance technique, the assumptions described
above may be rather unrealistic. For example, the assumption of independence
between the random variables Xk and the random number N may conflict with
those situations in which a very high total number of damages is likely associated to
a prevailing number of damages with small amounts.

1.4.5 Introducing Time into Valuations

While dealing with risks defined on a multi-year horizon, as in the Case 3c (Disability
benefits; multi-year period) described in Sect. 1.2.4, the role of time, and, in particular,
the time value of money, can have a dramatic importance. This is especially true when
risks arising from randomness of the individual lifetime (i.e., in the framework of
personal risk management) are focussed; see, for example, the need for resources at
retirement (Case 4a in Sect. 1.2.5), or the problem of outliving the resources available
at retirement (Case 4c). However, these and similar problems will be dealt with in
depth while describing life insurance products designed to cover the related risks,
namely in Chap. 4. Now, to introduce the role of time in risk assessment, we only
focus on a specific example.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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We refer to the problem described as Case 3c (Disability benefits; multi-year
period). As regards probabilities related to payment of disability benefits, we denote
with p the probability of an employee suffering an accident during a one-year interval;
we assume that this probability is constant over the whole m-year period.

Under the hypotheses we have assumed for Case 3b (Disability benefits; one-year
period), the probability distribution of Kt , for t = 1, 2, . . . , m, is binomial (see
(1.4.17) and (1.4.18)); thus

πk = P[Kt = k] =
(

n

k

)
pk (1 − p)n−k; k = 0, 1, . . . , n (1.4.40)

and hence
E[Kt ] = n p (1.4.41)

Var[Kt ] = n p (1 − p) (1.4.42)

As Xt = C Kt , we obviously have

E[Xt ] = C n p (1.4.43)

We assume that the employer decides to fund his/her liability, related to the group
of employees, by allocating at the beginning of the m-year period (i.e., at time 0) an
amount of assets meeting the expected value of the disability benefits. Further, we
assume that the assets provide the employer with an interest, at the annual interest
rate i . We denote with At the share of assets, allocated at time 0, to fund the benefits
payable at time t . Then, the following relation must hold:

At (1 + i)t = E[Xt ] (1.4.44)

that is,
At = C n p (1 + i)−t (1.4.45)

Hence, the total amount of assets to allocate at time 0 is given by

A =
m∑

t=1

At = C n p
m∑

t=1

(1 + i)−t (1.4.46)

The quantity A can also be read in an alternative manner. We define the random
amount, Y , as follows:

Y =
m∑

t=1

Xt (1 + i)−t (1.4.47)
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Table 1.6 Disability benefits
(m-year period)

Year t E[Xt ] Allocation At

i = 0.02 i = 0.04

1 500 490.20 480.77

2 500 480.58 462.28

3 500 471.16 444.50

4 500 461.92 427.40

5 500 452.87 410.96

Total A 2 356.73 2 225.91

Thus, Y is the random present value of the benefits. Then, we calculate the expected
present value (shortly, the actuarial value) of the benefits:

E[Y ] =
m∑

t=1

E[Xt ] (1 + i)−t = C n p
m∑

t=1

(1 + i)−t (1.4.48)

Finally, from (1.4.46) we find that A = E[Y ], that is, the amount of assets to allocate
at time 0 is equal to the actuarial value of the benefits.

Remark The allocation of assets to fund the payment of disability benefits to the employees
constitutes an example of risk retention, or self-insurance; see Sect. 1.3.6.

Example 1.4.4 Refer to the disability benefit arrangement described in Example
1.4.2. Assume n = 100, and a time horizon of m = 5 years. Table 1.6 shows the
allocations At needed to fund (at the beginning of the period) the employer’s liability,
if the interest rate is i = 0.02, or i = 0.04, respectively. ❑

1.4.6 Comparing Random Yields

We now refer to Case 1b (Random yields). First, we note that the investment with
yield X4 can be disregarded because dominated by the investment with yield X1 (see
Table 1.3): indeed, in all the states of the world the outcome of X1 is not worse than
the corresponding outcome of X4, and in at least one state (state S3, in the example),
the outcome of X1 is better than the corresponding outcome of X4. Thus, the choice
can be restricted to the first three investments.

We assume, for simplicity, that the three states of the world have the same prob-
ability, i.e.,

P[S1] = P[S2] = P[S3] = 1

3
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Table 1.7 Expected value
and variance of random yields

E[Xi ] Var[Xi ]
X1 6.0 0.667

X2 6.0 24.000

X3 5.8 0.180

Expected values and variance of the random yields X1, X2, and X3 are given in
Table 1.7, from which we can note what follows:

a. investments 1 and 2 can be considered to be equivalent in terms of expected value;
b. investment 1 is less risky than investment 2, as the former has a lower variance;
c. from (a) and (b), investment 2 turns out to be dominated in mean-variance by

investment 1 (albeit it is not dominated in terms of the items of the payoff matrix);
d. investment 3 is less profitable than investment 1 in terms of expected value, but, at

the same time, it is less risky; hence, a risk averse investor could prefer investment
3 to investment 1, and then “pay” the lower riskiness by accepting a lower expected
yield.

The analysis of Table 1.7, according to a mean-variance approach, leads to the
following conclusion: while investment 2 can be excluded from further analysis,
both investments 1 and 3 are candidates, the preference being driven by the risk
aversion of the investor.

In more general terms, the set of “solutions”, each of which consists in the choice
of an investment, can be split into two subsets, namely the set of dominated solutions
and the set of mean-variance efficient solutions (see Fig. 1.10). According to the
mean-variance approach, the choice should be restricted to efficient solutions. Of
course, the choice of a specific solution depends on the investor’s risk aversion.

Fig. 1.10 Dominated versus
efficient solutions according
to the mean-variance
criterion
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Table 1.8 Summarizing
expected value and variance
of the efficient solutions

Q[Xi ] = E[Xi ] − α Var[Xi ]
α 0 0.01 0.1 1

X1 6.000 5.993 5.933 5.333

X3 5.800 5.798 5.782 5.620

Expected value and variance can be summarized by choosing an appropriate
function, which associates a real number to each investment choice. The value of
the function should increase as the expected value increases, and decrease as the
variance increases. For example, the following function can be adopted:

Q[Xi ] = E[Xi ] − αVar[Xi ] (1.4.49)

The (positive) parameter α quantifies the risk aversion. If α = 0, there is no risk
aversion, and the choice relies on the expected values only. The higher is α, the more
importance is attributed to the riskiness expressed by the variance.

Another function which balances expectation and riskiness is the following one:

Q[Xi ] = E[Xi ] − β σ [Xi ] (1.4.50)

where β expresses the risk aversion.
Table 1.8 refers to the example discussed above (see Table 1.7). We see that, for a

(relatively) high value of the parameter, i.e., for α = 1, namely for a (relatively) high
risk aversion, investment 3 is preferred to investment 1, despite its lower expected
yield.

The functions Q, defined by (1.4.49) and (1.4.50), respectively, can be applied to
several types of result, e.g., amounts of profit, investment yields, etc. Other functions
have specifically been proposed to assess investment yields. An important example
is provided by the Sharpe ratio (or Sharpe index), originally called the “reward-to-
variability” ratio. In its simplest version, the Sharpe ratio is defined as follows:

Q[Xi ] = E[Xi ] − r f

σ [Xi ] (1.4.51)

where Xi denotes the investment yield and r f the risk-free rate of return.

1.4.7 Risk-Adjusted Valuations

We now attack the following problem: how can we evaluate the future cash flows of
a random financial transaction,
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• allowing for risk,
• adopting a valuation criterion only based on

– discount factors,
– expected values.

This means that the presence of risks will be accounted for, in the evaluation model,
via an appropriate choice of the discount factor and/or the ingredients in the expected
value calculation. Hence, variance and other specific risk measures do not enter the
model (unlike the examples in Sect. 1.4.6, in which the variance or the standard
deviation are explicitly accounted for; see (1.4.49), (1.4.50) and (1.4.51)).

For brevity, we only deal with a very simple financial transaction and, in particular,
we refer to Case 1a (Zero-coupon bonds) presented in Sect. 1.2.2. We denote the
probabilities of the states of the world as follows:

p = P[S1] (1.4.52)

1 − p = P[S2] (1.4.53)

These probabilities are usually called natural (or realistic, or physical) probabilities.
In particular, we assume

p = 1 − p = 1
2 (1.4.54)

For the payoff of the risk-free bond (described in the second row of Table 1.2),
we obviously have

Ep[XB] = 100 (1.4.55)

For the payoff of the risky bond (see the first row of Table 1.2), we find the same
expected value, i.e.,

Ep[XA] = 50 p + 150 (1 − p) = 100 (1.4.56)

(note that the suffix p recalls that the expected value is calculated using the nat-
ural probabilities). Clearly, the expected values do not account for the different risk
degrees. Conversely, the prices of the two bonds should reflect the absence/presence
of risk.

We denote with PA the price (at time 0) of the risky bond, and PB the price of
the risk-free bond. Further, we denote with rf the risk-free rate, and set rf = 0.03.
As regards the price of the risk-free bond, we assume that it is given by the present
value of its payoff. Thus, we have

PB = 100 (1 + rf)
−1 = 97.09 (1.4.57)

For the price of the risky bond, PA, it is reasonable to assume

PA < PB (1.4.58)
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because of risk aversion. In particular, let PA = 95 be the price observed on the
capital market. How can this price be formally “explained”? The three following
approaches can be adopted:

1. Calculate (using the natural probabilities) the expected value of the payoff, and
discount this value using the risk-adjusted discount rate (briefly, the risk discount
rate) ρ, ρ > rf . Thus, we find

PA = Ep[XA] (1 + ρ)−1 (1.4.59)

The quantity ρ − rf is known as the risk premium. In our numerical example, we
find that PA = 95 implies a risk discount rate ρ = 0.05263.

2. Calculate the expected value of the payoff using risk-adjusted probabilities p′,
1 − p′ (instead of the natural probabilities):

Ep′ [XA] = 50 p′ + 150 (1 − p′) (1.4.60)

The terms 50 p′, 150 (1 − p′) are called risk-adjusted expected cash flows. As
the presence of risk has been allowed for via adjusted probabilities, we adopt the
risk-free rate for discounting. Hence

PA = Ep′ [XA] (1 + rf)
−1 (1.4.61)

In our numerical example, the price PA = 95 implies Ep′ [XA] = 97.85; from
Eq. (1.4.60), we then find the risk-adjusted probabilities p′ = 0.5215, 1 − p′ =
0.4785. Note that adjusting for risk leads to a higher “weight” attributed to the
worst result.

3. Allow for riskiness by “transforming” the amounts of the cash flows of the risky
bond. Denote with u(XA) the transformed random cash flow, whose possible
outcomes are u(50) and u(150). In particular, as transform u we can take a utility
function, expressing our risk aversion. The expected value of u(XA) is then called
the expected utility of XA, and is denoted with U[XA]. Thus, we have

U[XA] = Ep[u(XA)] = u(50) p + u(150) (1 − p) (1.4.62)

We define the certainty equivalent of the random result XA as the amount A
which, if received certainly, is regarded as equivalent to the random result. In
formal terms:

u(A) = u(50) p + u(150) (1 − p) (1.4.63)

Note that, because of the risk aversion (which should be expressed by the function
u), we will find:

A < E[XA] = 50 p + 150 (1 − p) (1.4.64)
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Fig. 1.11 Risk aversion and utility function

(see Fig. 1.11a; the graphs are just indicative). Finally, the price PA is given by
the present value of A, i.e.,

PA = A (1 + rf)
−1 (1.4.65)

For example, the quadratic function

u(x) = −0.000005507 x2 + 0.007493 x (1.4.66)

leads (with p = 1
2 ) to A = 97.85, and then PA = 95. We note that, if we choose

the risky bond, we will get at maturity either 50 or 150, instead of 100 provided
by the risk-free bond. In terms of the utility function, we find:

u(50) = 0.360867

u(100) = 0.6942

u(150) = 1

Hence, because of risk aversion we attribute to the negative difference 50−100
an absolute “value”, u(100)−u(50), greater than the value we attribute to the
positive difference 150−100 (again, see Fig. 1.11a). Under specific hypotheses,
the risk aversion reflects on a concave curve (the graph of the utility function),
which associates values to all monetary amounts (see Fig. 1.11b).

Figure 1.12 summarizes the approaches we have now described. Note that the term
“values” denotes either the amounts of cash flows, or some transform (for example,
the utility) of the amounts.

PRICE EXPECTED   VALUE DISCOUNT FACTORX = 

VALUES PROBABILITIESX 

123

Fig. 1.12 Risk-adjusted pricing. Interpretations
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Another approach to the evaluation of future cash flows, allowing for risk, relies
on the idea of balancing expectation and riskiness using an appropriate function, as
discussed in Sect. 1.4.6 (see, in particular, formulae (1.4.49) and (1.4.50)). Hence, this
approach consists in adding to the expected value, calculated according to the natural
probabilities, a (negative) term based on an appropriate measure of risk. However, it
should be stressed that such an approach (explicitly involving a risk measure) cannot
be placed into the framework described at the beginning of this section. Referring to
the example above, the approach is as follows:

4. Calculate (using the natural probabilities):

• the expected value of the payoff,
• the value of a function chosen to express the randomness of the payoff.

Then, for the price of the risky bond we set

PA = (Ep[XA] − γ �p[XA]) (1 + rf)
−1 (1.4.67)

where �p[XA] quantifies the risk of the transaction. Examples (as seen in
Sect. 1.4.6) are given by the variance Var[XA] and the standard deviation σ [XA]
(both calculated with the natural probabilities). The parameter γ expresses the
risk aversion. Note that the risk-free rate has been used for discounting, as the
adjustment for risk is already expressed by the term −γ �p[XA].
The four approaches have been adopted in various application fields. Moreover,

combining two or more approaches is a rather common practice in financial and
actuarial calculations. Several examples will be provided in the following chapters.

1.5 Risk Measures

1.5.1 Some Preliminary Ideas

While expressions such as “risk assessment” and “impact assessment” have a broad
meaning, denoting whole phases of the risk management process (see, in particular,
Sect. 1.3.4), the expression risk measures has a rather specific meaning. Actually, it
denotes a set of typical values which can be used in order to express the variability
of a random quantity, which represents a risk, or the related impact.

A number of risk measures belong to the field of probability theory and statistics
(see Sect. 1.5.2), although in that context the expression “risk measures” is not com-
monly used. Other measures have been proposed in more recent times, and specifi-
cally oriented to risk management problems, and to capital allocation strategies (see
Sect. 1.5.4).
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In what follows, we refer to a random amount Z which represents the impact
originating from a (risky) transaction. In particular, Z can refer to a speculative risk
(see Sect. 1.2.2); thus:

Z < 0 ⇔ loss

Z > 0 ⇔ profit

For the random amount Z , we assume a probability distribution (based on statistical
experience, or hypotheses about the underlying causes of risk, and so on). Let F(z)
denote the cumulative distribution function.

Further, we assume that the probability distribution can be described in terms of
the probability density function (briefly, the pdf). Hence, denoting with f (z) the pdf,
we have in general terms

P[a < Z ≤ b] = F(b) − F(a) =
∫ b

a
f (z) dz (1.5.1)

The expected value, μ, of Z is given by the following expression:

μ = E[Z ] =
∫ +∞

−∞
z f (z) dz (1.5.2)

Clearly, if the possible outcomes of Z constitute a limited interval, say [zmin, zmax],
the integration interval should be consequently modified.

1.5.2 Traditional Risk Measures

The variance (that we have already used in a discrete context; see, for example,
formulae (1.4.8) and (1.4.34)) is defined as follows:

Var[Z ] = E[(Z − μ)2] =
∫ +∞

−∞
(z − μ)2 f (z) dz (1.5.3)

As is well known, the square root of the variance, usually denoted with σ [Z ], is
called the standard deviation:

σ [Z ] = √
Var[Z ] (1.5.4)

Note that:

• the variance and the standard deviation are two-sided risk measures, since both
positive and negative deviations from the expected value are captured;
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• the standard deviation is expressed in the same “unit” of the random amount Z ;
for example, if Z is expressed in Euro, the standard deviation is expressed in
Euro too; conversely, the variance is expressed in the squared unit, which can be
meaningless, as is the case for Euro squared.

If E[Z ] �= 0, we can define the variance-to-mean ratio:

VMR[Z ] = Var[Z ]
E[Z ] (1.5.5)

Conversely, the coefficient of variation is given by the following ratio:

CV[Z ] = σ [Z ]
E[Z ] (1.5.6)

(see also Sect. 1.4.3). The coefficient of variation, especially in the field of risk
management and insurance, is also known as the risk index. Relevant applications
will be described in Sects. 1.6.1 and 2.3.4. Note that the quantities VMR[Z ] and
CV[Z ] are “relative” measures of risk; in particular, CV[Z ] is unit-free, as both the
numerator and the denominator are expressed in the same unit.

For a random amount Z with a limited interval of possible outcomes, the range
is defined as follows:

Range[Z ] = zmax − zmin. (1.5.7)

1.5.3 Downside Risk Measures

In order to capture only the “bad” part of a random result, risk measures other than
the two-sided ones are needed. One-sided risk measures, more precisely “downside”
risk measures, can fulfill this requirement. A trivial example is given by the value
zmin.

Most of downside risk measures have been proposed in the framework of portfolio
management as tools for the analysis of the return. Further risk measures have been
more recently proposed in the context of risk management.

First, we can focus on the possible outcomes of Z which fall below the expected
value μ. To this purpose, we can use as risk measure the semivariance, which captures
only the negative deviations from the expected value, and is defined as follows:

semiVar[Z ] = E[(min{Z − μ, 0})2] =
∫ μ

−∞
(z − μ)2 f (z) dz (1.5.8)

Further, the semi-standard deviation is given by

semiσ [Z ] = √
semiVar[Z ] (1.5.9)

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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The idea underlying the definition of the semivariance and the semi-standard
deviation can be generalized, first by assuming as the benchmark a chosen “target”
τ , instead of the expected value μ. Thus, only the negative deviations from τ are
accounted for. Further, instead of considering just the second power of the deviations,
we can assume the generic power k. Then, we define the lower partial moment of
degree k as follows:

LPMk
τ [Z ] = E[(min{Z − τ, 0})k] =

∫ τ

−∞
(z − τ)k f (z) dz (1.5.10)

A (somewhat arbitrarily) chosen target, τ , also underpins the definition of the
shortfall risk measures. If Z denotes a monetary result, a negative value can be
chosen for the target τ ; thus, the event Z ≤ τ means a loss greater than (or equal to)
the chosen target, namely a tail loss. Conversely, if Z denotes a return, the target can
be positive (and small), so that focus is on the return outcomes which do not reach
the stated benchmark.

The shortfall probability, is defined as follows

P[Z ≤ τ ] = F(τ ) =
∫ τ

−∞
f (z) dz (1.5.11)

Referring to a monetary result, the (negative) expected value of the loss, condi-
tional on exceeding the (negative) target, is known as the expected shortfall. It is
given by the following expression:

μ0

profit loss 

τ

P[Z ≤ ]τ

Probability 
density 
function  
of Z

   ES [Z] τ

tail loss 

Fig. 1.13 Shortfall risk measures



46 1 Risks and Insurance

ESτ [Z ] = E[Z |Z ≤ τ ] =

∫ τ

−∞
z f (z) dz

P[Z ≤ τ ] (1.5.12)

The shortfall risk measures we have now defined are illustrated in Fig. 1.13.

1.5.4 Risk Measures and Capital Requirements

Downside risk measures have been proposed, which can be interpreted as capital
requirements aiming to “protect” a whole business (a firm, a financial intermediary,
etc.) against a possible loss caused by a line of business (e.g., a financial transaction)
with random result Z . A capital must then be allocated to the line of business, and
can be used to cover (at least to some extent) the potential loss, so that the loss itself
does not compromise other lines of business.

The Value at Risk (briefly, the VaR) is the (negative) amount V a Rα[Z ] such that

P
[
Z ≤ V a Rα[Z ]] = α (1.5.13)

where α is a (low) probability, somewhat arbitrarily chosen, for example, α = 0.01.
The probability 1 − α is also known as the confidence level. See Fig. 1.14.

The following points should be stressed:

• The amount V a Rα[Z ] is the α-percentile of the probability distribution of Z . If
the function F is invertible, we have

V a Rα[Z ] = F−1(α) (1.5.14)

μ0

profit loss 

Probability 
density 
function  
of Zα

μ + σμ − σVaRα[Z]TVaRα[Z]

tail loss 

Fig. 1.14 Value at Risk and Tail Value at Risk
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Note that the VaR has no meaning, if a probability has not been stated.
• The amount V a Rα[Z ] can be interpreted as the maximum loss if an extreme event

(or “tail event”) does not occur. Of course, the definition of “extreme” strictly
depends on the chosen probability.

• If the capital −V a Rα[Z ] is allocated, any non-tail loss is completely funded.
• The quantity V a Rα[Z ] does not provide, by itself, any information about the

possible loss if a tail event occurs.

It can be useful to express V a Rα[Z ] in terms of the expected value μ and the
standard deviation σ of the probability distribution of Z . Let γα be the coefficient
such that

P[Z ≤ μ − γα σ ] = α (1.5.15)

then, we have
V a Rα[Z ] = μ − γα σ (1.5.16)

Given the probability α, the coefficient γα can be immediately determined if, for
example, we assume for Z the normal distribution, namely

Z ∼ N (μ, σ ) (1.5.17)

(see Table 1.9).
The Tail Value at Risk (shortly, the TailVaR, or TVaR, also known as the Condi-

tional Tail Expectation) is the (negative) amount T V a Rα[Z ] defined as follows:

T V a Rα[Z ] = E
[
Z
∣∣Z ≤ V a Rα[Z ]] = 1

α

∫ V a Rα[Z ]

−∞
z f (z) dz (1.5.18)

Comparing (1.5.18) to (1.5.12), we find that T V a Rα[Z ] is the expected shortfall
related to the target V a Rα[Z ], namely:

T V a Rα[Z ] = ESV a Rα[Z ][Z ] (1.5.19)

Note that, for any probability distribution, we have of course

− T V a Rα[Z ] > −V a Rα[Z ] (1.5.20)

Table 1.9 Coefficient γα

(Normal distribution)
α γα

0.100 1.282

0.050 1.645

0.025 1.960

0.001 3.090
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VaRαTVaRα
 = VaRα '

α
α'

α

VaRα

α''

TVaRα
 = VaRα''

Fig. 1.15 Relation between VaR and TailVaR

so that, if we allocate the amount −T V a Rα[Z ], instead of −V a Rα[Z ], a larger
portion of a loss caused by a tail event can be covered.

An alternative expression for the TailVaR is the following one:

T V a Rα[Z ] = 1

α

∫ α

0
V a Rp[Z ] dp (1.5.21)

Thus, the TailVaR is the integral mean value of V a Rp[Z ] for 0 ≤ p ≤ α. Denote
with F the cumulative distribution function of Z , and assume it is invertible. Let
z = F−1(p) and hence p = F(z). Then, from (1.5.21) we find, by substitution,
(1.5.18).

For a given probability distribution of Z , we can find α′ such that

T V a Rα[Z ] = V a Rα′ [Z ] (1.5.22)

Relation (1.5.22) can be useful when a procedure for the calculation of the VaR
is available. Of course, α′ < α. However, the exact link between the probabilities
involved by VaR and TailVaR depends on the probability distribution of Z (see
Fig. 1.15). Shifting to another probability distribution, we find

T V a Rα[Z ] ≈ V a Rα′ [Z ] (1.5.23)

with α′ fulfilling condition (1.5.22).

Remark An in-depth analysis of risk measures should allow for the “properties” which can be
either fulfilled or not by each particular risk measure. Such an analysis is beyond the scope of this
chapter. We only address some aspects. A risk measure R[Z ] is qualified as coherent if it satisfies a
given set of properties.1 Among these properties, we mention the sub-additivity, which is formally
expressed by the following inequality:

R[Z1 + Z2] ≤ R[Z1] + R[Z2] (1.5.24)

1For a mathematical definition of the properties which must be fulfilled by a coherent risk measure,
the reader can refer to the following seminal contribution: Artzner P., Delbaen F., Eber J.M., Heath
D. (1999), Coherent Measures of Risk, Mathematical Finance. Vol. 9 (3), pp. 203–228.
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where Z1, Z2 denote two random results. In words: the risk arising from two transactions together
cannot be worse than the sum of the two risks separately considered. This property leads to the
diversification principle (see also Sect. 1.3.5). Indeed, inequality (1.5.24) captures the meaning of
diversification. We note, for example, what follows:

• an investor who adopt a sub-additive risk measure may have incentive to merge the investments
with results Z1, Z2;

• if the risk measure is interpreted as a capital requirement, when two risky business merge there
is no need to increase the capital allocation.

It can be proved that the VaR is not sub-additive, and hence is not a coherent risk measure for all
probability distributions. Conversely, the TailVar satisfies the sub-additivity.

1.6 Transferring Risks

1.6.1 Building Up a Pool

As risk pooling is the rationale underlying the insurance activity, we first focus on
the effects of managing jointly a number of risks of the same type (e.g., originating
either from fire, or third-party liability, and so on).

We refer to n individuals bearing the same type of risk. For the generic individual
j , the risk implies a loss x ( j) (a damage, a liability, and so on) if the event E ( j)

occurs. Thus, we are dealing with the “basic” type of risk we have described as
Case 2 (Possible loss with fixed amount) in Sect. 1.2.3. In formal terms, the random
loss, X ( j), for j = 1, 2, . . . , n, is defined as follows:

X ( j) =
{

x ( j) if E ( j)

0 if Ē ( j) (1.6.1)

We assume that the events E ( j) and hence the individual losses X ( j) are inde-
pendent, and denote with p( j), j = 1, 2, . . . , n, the probability of suffering the loss,
thus

p( j) = P[E ( j)] = P[X ( j) = x ( j)] (1.6.2)

Each individual is risk averse, and then is looking for some kind of financial
protection against the potential loss. To this purpose, all the n individuals decide to
set up a “pool”, which will raise monies through individual contributions, and then
will pay benefits to the individuals (members of the pool) who will have suffered a
loss.

We assume that each individual benefit is equal to the loss suffered, so that the
member j will receive the amount x ( j) if he/she suffers the loss, 0 otherwise. In
Sect. 1.6.2 we will deal with benefits in a more general context.
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We now focus on some features of the risk aggregation, which originate from the
construction of the pool. The total random amount X [P], which will be paid by the
pool to members suffering a loss, is defined as follows:

X [P] =
n∑

j=1

X ( j) (1.6.3)

Thus, X [P] is the random outgo of the pool. Its expected value is given by

E[X [P]] =
n∑

j=1

E[X ( j)] =
n∑

j=1

x ( j) p( j) (1.6.4)

and its variance, thanks to the hypothesis of independence, is given by

Var[X [P]] =
n∑

j=1

Var[X ( j)] =
n∑

j=1

(x ( j))2 p( j) (1 − p( j)) (1.6.5)

The minimum possible outcome of the random amount X [P] is 0, while the maxi-
mum one is

∑n
j=1 x ( j), and hence Range[X [P]] = ∑n

j=1 x ( j). The possible outcomes

and the probability distribution of X [P] clearly depend on the values x ( j).
To simplify the problem, we now assume that the pool is “homogeneous” in terms

of both the amounts and the probabilities of loss, namely for j = 1, 2, . . . , n:

x ( j) = x (1.6.6)

p( j) = p (1.6.7)

It follows that, for j = 1, 2, . . . , n:

E[X ( j)] = E[X (1)] = x p (1.6.8)

Var[X ( j)] = Var[X (1)] = x2 p (1 − p) (1.6.9)

Hence, the possible outcomes of X [P] are

0, x, 2 x, . . . , n x

so that Range[X [P]] = n x . The expected value and variance (see (1.6.4) and (1.6.5))
then reduce to:

E[X [P]] = n x p (1.6.10)

Var[X [P]] = n x2 p (1 − p) (1.6.11)
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The coefficient of variation (or risk index, see (1.5.6)) is given by:

CV[X [P]] =
√
Var[X [P]]
E[X [P]] = x

√
n p (1 − p)

x n p
=

√
1 − p

n p
(1.6.12)

If we denote with K the random number of events in the pool, we have

X [P] = K x (1.6.13)

It follows that, in formula (1.6.10), the expected value can be read in two ways,
namely:

1. (n p) x = E[K ] x , that is, the expected number of losses times the amount of the
individual loss;

2. n (x p) = n E[X (1)], that is, the pool size times the individual expected loss.

Example 1.6.1 We refer to a pool of n independent risks, fulfilling assumptions
(1.6.6) and (1.6.7), with x ( j) = x = 1 000 and p( j) = p = 0.005 for j = 1, . . . , n;
then, we have:

E[X ( j)] = x p = 5

Var[X ( j)] = x2 p (1 − p) = 4 975

Table 1.10 shows various results concerning the random outgo X [P], if n = 100,
n = 1 000, and n = 10 000 respectively. ❑

As regards the effects of building up a pool of risks, the following feature should
be stressed. The variance of X [P] increases linearly as n increases (see Eq. (1.6.11)),
whereas the standard deviation increases proportionally to

√
n. Hence the “absolute”

riskiness increases. However, the “relative” riskiness in terms of the coefficient of
variation (see (1.6.12)) decreases as the pool size increases. Similar comments have
been proposed in Example 1.4.2.

Table 1.10 Some typical values of the random outgo of a pool of risks

n = 100 n = 1 000 n = 10 000

Range[X [P]] 100 000 1 000 000 10 000 000

E[X [P]] 500 5 000 50 000

Var[X [P]] 497 500 4 975 000 49 750 000√
Var[X [P]] 705.34 2 230.47 7 053.37

CV[X [P]] 1.411 0.446 0.141



52 1 Risks and Insurance

Table 1.11 The coefficient
of variation

n CV[X [P]]
10 4.461

100 1.411

1000 0.446

10000 0.141

100000 0.045

. . . . . .

∞ 0.000

In particular, we note that, for any given probability p, we have

lim
n→∞CV[X [P]] = 0 (1.6.14)

Example 1.6.2 We consider a pool of risks, fulfilling assumptions (1.6.6) and (1.6.7),
with p = 0.005. Table 1.11 illustrates the coefficient of variation for various pool
sizes. ❑

The result expressed by (1.6.12) is of outstanding importance in risk theory and
constitutes a kernel feature of the risk transfer process (and the insurance process, in
particular). Moreover, the result can be extended to more general pools: for example,
pools which do not fulfill assumption (1.6.6), or (1.6.7). We will come back on these
and related issues in Sect. 2.3.4.

1.6.2 Financing the Pool

We now describe some models, which aim to define possible arrangements for financ-
ing the outgo of the pool.

We still address Case 2 (Possible loss with fixed amount). The outgo, namely
the random total payment, is given by X [P] = ∑n

j=1 X ( j) (see (1.6.3)). Further, we
assume the homogeneity of the pool in terms of both the amount (see (1.6.6)) and
the probability (see (1.6.7)) of the individual loss.

Method 1. We assume that the total payment is to be shared equally among the
members of the pool, so that the pool income is, by definition, equal to the outgo.

According to information available at the beginning of the period, the amount

contributed by each member is of course random, and is given by
X [P]

n
. We note

that, thanks to the homogeneity hypotheses, it can also be expressed as follows (see
relation (1.6.13)):

X [P]

n
= K x

n
(1.6.15)

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Nonetheless, we keep the expression of the total payment as the sum of the individual
losses, which is more appropriate to following developments.

The expected value of the individual contribution is

E

[
X [P]

n

]
= 1

n

n∑
j=1

E[X ( j)] = x p (1.6.16)

and thus it turns out to be independent of the number of members of the pool. In
particular, the expected value of the amount contributed is equal to the expected value
of the individual loss. Thus, in terms of expected value the members do not gain any
advantage by transferring the risks to the pool.

Conversely, an advantage is gained in terms of the individual riskiness, which
does depend on the size of the pool. Indeed, if we assume the variance as the risk
measure, we have that, for the generic j th individual, the “original” riskiness (i.e.,
the riskiness before transfer to the pool) is given by

Var[X ( j)] = x2 p (1 − p) (1.6.17)

whereas, for the individual as a member of the pool, the “final” riskiness, which only
originates from the randomness of the contribution, is given by

Var

[
X [P]

n

]
= 1

n2

n∑
j=1

Var[X ( j)] = 1

n
x2 p (1 − p) (1.6.18)

Thus, as the size n of the pool increases, the individual riskiness (in terms of the
variance) decreases.

From a theoretical point of view, the Strong Law of Large Numbers states that:

P

[
lim

n→∞

∑n
j=1 X ( j)

n
= E[X (1)]

]
= 1 (1.6.19)

where E[X (1)] denotes the expected value, common to all the random amounts X ( j).
According to the notation used above, we have

P

[
lim

n→∞
X [P]

n
= x p

]
= 1 (1.6.20)

which means that, in the case of an “infinitely” large pool, each member’s contribution
is equal to his/her expected loss with a probability equal to one.

In conclusion, the individual contribution is random, with a riskiness decreas-
ing as the pool size increases, whereas the coverage of the total payment is cer-
tain (of course, provided that, at the end of the period, all the members pay the
contributions). �
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Method 2. We now assume that the total payment is funded in advance (that is, at the
beginning of the period, and hence disregarding its actual outcome), by individual
contributions to be determined according to some calculation principle. In general
terms, we have to determine an amount which will constitute the income “facing”
the outgo X [P]. As the outgo is random, we have to summarize it using some typical
values.

In particular, we assume what follows:

• the total amount of contributions, that we denote with P [P], has to meet exactly
the expected value of the total payment;

• the effect of accumulation over the year (i.e., the interest) is negligible, and hence
disregarded.

Then:
P [P] = E[X [P]] = n x p (1.6.21)

So, the individual contribution is certain, and is given by

P [P]

n
= x p (1.6.22)

Note that the individual contribution turns out to be the expected value of the individ-
ual loss. Thus, the individual riskiness is completely removed, as far as the amount
of the contribution is concerned.

However, the outcome of the total payment X [P] may be greater than its expected
value, and hence greater than the total amount of contributions. Therefore, it is
important to focus on the event

X [P] > P [P] (1.6.23)

which constitutes a critical point in the management of a pool of risks.
A more general setting can help us in analyzing critical aspects of the pool man-

agement. We denote with Π [P] the total amount of contributions which, however, is
now assumed to be not necessarily equal to E[X [P]], so that the individual contribu-
tion is not necessarily equal to x p (but all the individual contributions are still in the

same amount, namely
Π [P]

n
). We consider the following situations.

• Π [P] < E[X [P]]: in this case, the probability of covering the outgo is trivially
lower than in the case Π [P] = P [P] = E[X [P]]. Anyway, since this case may be
of some practical interest, we will shortly address it in terms of the consequent
benefit arrangement (see Method 3).

• Π [P] > E[X [P]]: in this case, the probability of covering the outgo is obviously
higher than in the case Π [P] = P [P] = E[X [P]]. The difference Π [P] − P [P]
constitutes the total safety loading included in the amount of the contributions in
order to raise the probability of covering the total payment. The assessment of
appropriate safety loadings will be discussed in Sect. 2.3.6, referring to a portfolio
of insured risks.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Note that, whatever the amount Π [P], when X [P] < Π [P] the pool gains a profit,
whilst if X [P] > Π [P] the pool suffers a loss. In the former case, the profit can
be (partially) redistributed to the members and (partially) accumulated, in order to
increase the probability of meeting the payment in future years. In the latter case,
if additional resources are not available as the result of previous accumulations,
a practicable solution is given by an appropriate reduction of the payment to the
members who suffered a loss. Namely, those members should receive:

X ′ = min

{
x,

Π [P]

K

}
(1.6.24)

Thus, the total amount available from contributions is divided equally among the K
members who suffered a loss. Hence, the benefit X ′ is a random amount. �

Method 3. This method can be seen as a generalization of the approach adopted in
the framework of Method 2, in the case of insufficient amount of contributions (see
(1.6.24)). Assume that the total amount of contributions is determined according to
some rule which, for example, links the individual contribution to the annual income
of each member. Hence, individual contributions are not related, at least to some
extent, to the (estimated) total amount of individual losses.

Then, denoting also here with Π [P] the total amount of contributions, namely
the income by the pool, relation (1.6.24) still applies to determine the individual
benefit paid to members who suffered a loss. However, it is important to stress that,
if compared to Method 2, Method 3 basically implies a logical “inversion”, as benefits
are determined, in any case, as a function of the income (and the random number K
of individual losses in the pool). �

Example 1.6.3 Refer to a pool of n = 500 independent risks, homogeneous in terms
of both the amount of individual loss x = 1 000 and the probability of loss p = 0.01.
Note that:

E[K ] = n p = 5

E[X [P]] = n p x = 5 000

Consider the following cases:

a. the number of individual losses in the pool is K = 2, and hence X [P] = 2 000;
b. the number of individual losses in the pool is K = 6, and hence X [P] = 6 000.

1. Assume that the pool is financed according to Method 1, hence the total random
payment X [P] is to be shared equally among the members of the pool. The
expected value and the variance of the amount contributed by each member
are respectively given by:

E

[
X [P]

500

]
= x p = 10
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Var

[
X [P]

500

]
= 1

500
x2 p (1 − p) = 19.80

Note that, conversely, the variance of the individual loss, before transfer to the
pool, is given by:

Var[X ( j)] = x2 p (1 − p) = 9 900

In the two cases we have:
a. the outcome of the individual contribution is 4, and thus lower than its

expected value;
b. the outcome of the individual contribution is 12, and thus higher than its

expected value.
2. Assume that the pool is financed according to Method 2. The individual con-

tribution is then equal to x p = 10 (provided that no safety loading is applied).
In the two cases, we find that:
a. the pool gains a profit, equal to 5 000 − 2 000 = 3 000;
b. the pool suffers a loss, equal to 5 000 − 6 000 = −1 000.

3. Assume that the pool is financed according to Method 3, and that the individual
contribution is still equal to 10. In the two cases, we have:
a. the individual benefit is equal to 1 000, and the pool gains a profit, equal to

5 000 − 2 000 = 3 000;

b. the individual benefit is equal to min

{
1 000,

5 000

6

}
= 833.33. ❑

Figure 1.16 summarizes the relationships between contributions, losses and ben-
efits actually paid by the pool to its members. If we compare the three methods in
terms of the actual benefits maintainable by the various financing structures, we can,
in particular, note what follows.

Method  1

ACTUAL LOSSES 
(= ACTUAL BENEFITS) CONTRIBUTIONS

ESTIMATED LOSSES 
(= ESTIMATED BENEFITS)

CONTRIBUTIONS

ACTUAL BENEFITS

Method  2

Method  3

CONTRIBUTIONS

ACTUAL LOSSES

ACTUAL BENEFITS

Fig. 1.16 Contributions and benefits in pool financing arrangements
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• The construction and the management of a pool of risks are based on a mutual
agreement among the members of the pool itself. The “technical equilibrium”
between contributions and total payment is only guaranteed if Method 1 is adopted,
because contributions are determined ex-post, as a result of the observed total
amount of losses.

• Conversely, if the contributions are calculated ex-ante according to Method 2,
the technical equilibrium is not guaranteed. In particular, if X [P] > Π [P], and
the approach (1.6.24) is adopted in determining the actual payment, benefits are
no longer guaranteed. So, from a more practical point of view, Method 2 can be
adopted if an intermediary intervenes in the risk pooling process, and takes the
risk of paying the stated benefits even if the contributions collected do not cover
the actual losses. Clearly, this role of intermediation should be taken by an insurer.

• As already noted, Method 3 implies a logical inversion in the relationship between
contributions and benefits, and, by its nature, it does not provide the members of
the pool with any guarantee as regards the amount of benefits. An intermediation in
the pooling process is possible also in this case, but the related effect does not imply
taking the risk as in Method 2, but simply managing the monetary transaction. The
intermediary is, in this case, a “Mutual aid society”, or “Mutual benefit society”.
Thus, a real transfer of the risk does not take place when Method 3 is adopted,
and, for this reason, the method is outside the scope of our analysis.

• In all the three methods, the payment of benefits relies on money transfers from
members who pay contributions without receiving benefits to members who pay
contributions, suffer losses and then receive benefits. Such transfers constitute the
so-called mutuality effect, which is a particular type of “cross-subsidy” in the risk
transfer process. As regards mutuality in the insurance business, some examples
will be presented in Sect. 1.7.4. Cross-subsidy in insurance will be discussed also
in Sects. 2.2.7 and 2.2.8.

1.6.3 The Role of the Insurer

Assume the point of view of the individual who transfers the risk to a pool. Under
his/her perspective, the following points are important features of a good transfer
arrangement:

• the contribution to be paid to the pool is known in advance, namely at the time of
transferring the risk;

• the amount paid as the benefit complies with what stated at the time of transferring
the risk, whatever the number and the amounts of losses within the pool may be;
in other words, the benefit is guaranteed.

As noted at the end of Sect. 1.6.2, such an arrangement can be realized provided
that a further subject intervenes in the risk transfer process, and takes the risk of
paying the guaranteed benefits, even when the contributions do not meet the total
amount of individual losses. This subject is, typically, an insurance company (briefly:

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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an insurer), which acts as an intermediary in the risk transfer process, providing the
members of the pool (i.e., the insureds) with the guarantee of paying the benefits
according to the conditions stated in the transfer arrangement (i.e., in the insurance
contract), independently of the actual number and amounts of losses within the pool.

It should be stressed that the term “intermediary” should not be meant in an admin-
istrative sense only (namely, just consisting of collecting contributions, receiving the
applications for benefits, paying the benefits). Besides these jobs, the insurer inter-
mediates in a technical sense, by managing the mutuality within the pool, usually
called the portfolio (of insured risks), providing the guarantee of paying the stated
benefits, and hence taking the related risk.

Further, a financial intermediation is carried out, when multi-year contracts are
involved, which consists in managing over time the funds originated by collecting
the contributions.

It is interesting to single out the nature of the risk taken by the insurer, and the
consequent impact on the overall results of the insurance company. We still denote
with Π [P] the total amount of contributions, usually called premiums, collected by
the insurer (whatever the calculation method adopted), and with X [P] the random
amount of benefits paid. Further, we denote with Z [P] the net result arising from the
pool, namely:

Net result = Income − Outgo

that is, in formal terms:
Z [P] = Π [P] − X [P] (1.6.25)

Note that, in definition (1.6.25), the time value of money has been disregarded (i.e.,
an interest rate equal to 0 has been assumed). This can be reasonably accepted as we
are referring to a rather short period of time (say, one year).

Clearly, the insurer gains a profit if Z [P] > 0, whereas it suffers a loss if Z [P] < 0.
Figure 1.17 sketches a probability distribution of the net result Z [P], assuming, for
graphical simplicity, that the possible outcomes of Z [P] constitute an interval of real
numbers. Of course, the (exact) distribution of Z [P] depends on the assumptions
about the individual losses and the consequent distribution of the total payment X [P].
From Fig. 1.17 we can understand what follows.

• As E[Z [P]] > 0, a total amount of contributions Π [P] greater than the expected
payment E[X [P]] has been assumed; thus, a safety loading has been included in
the premiums (see Method 2 in Sect. 1.6.2);

• Despite the safety loading, the probability of a loss seems to be rather high; to
lower this probability, some risk management tools (besides a raise in the safety
loading) are available to the insurer; this topic will be dealt with in Chap. 2.

Various risk measures can be used for capturing critical aspects of the probability
distribution of the net result Z [P]; for example, the VaR, the TailVaR, and so on.
Some of these aspects will also be addressed in Chap. 2.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Fig. 1.17 Probability distribution of the net result from the pool

1.6.4 The Risk Transformation

The main feature of risk pooling (see Sect. 1.6.1) is the decrease in the relative
riskiness of the total payment X [P] thanks to a larger pool size n, as shown, e.g., by
the risk index. Although we are referring to a simplified setting, some conclusions
can be extended to more general cases.

The same feature, of course, also pertains to a portfolio payment X [P], i.e., when
the pool is managed by an insurer. Further, the insurer’s net result, Z [P], can be either
positive (profit) or negative (loss). Thus, we understand that, while the individual
risks transferred to the insurer are pure risks (see Sect. 1.2.4), the risk then borne by
the insurer is a speculative risk, as it can result either in a profit or in a loss.

To summarize, the two major features of the risk transformation operated by an
insurer are:

1. the relative riskiness which decreases as the portfolio size increases;
2. the “shift” from pure risks (the individual possible losses) to a speculative risk

(the portfolio net result).

Feature 1 is also known as diversification via pooling. However, it is worth not-
ing that the advantage gained by pooling risks can be reduced because of various
circumstances (that will be addressed in Sects. 2.3.1 and 2.3.2).

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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1.7 Insurance Products

1.7.1 The Insurance Cover. Policy Conditions

The transfer of a risk to an insurer is based, as already mentioned in Sect. 1.6.3, on
the insurance contract, whose documental evidence is given by the insurance policy.
The payment of the premium meets the benefits, which will be paid according to the
policy conditions.

Various types of benefits can be envisaged. In particular, the benefit can consist
in:

a. the reimbursement of expenses paid by the insured, for example, because of third-
party liability; the amount actually paid as the benefit usually depends on various
policy conditions, aiming to restrict the range of amounts which can be paid by
the insurer; this topic will be dealt with in Chap. 9;

b. an indemnity covering the loss suffered because of an accident, e.g., a fire; the
coverage is usually partial, according to policy conditions;

c. a forfeiture amount, namely an amount stated in the insurance contract.

Benefits of type a and b are usual in non-life insurance, whereas benefits of type
c are common in life insurance. Figures 1.18, 1.19, 1.20 summarize the terminology
currently used in life and non-life insurance.

PERIL
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EVENT 
INSURED

EVENT

ACCIDENT 

Fire, Car accident, 
Theft, Sickness, ... 

DAMAGE

Loss, 
Liability, 
Expenses

CLAIMASSESSMENT
AND 
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PAYMENT
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Fig. 1.18 Terminology in non-life insurance
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fixed 
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http://dx.doi.org/10.1007/978-3-319-21377-4_9
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Fig. 1.20 Terminology in
life insurance (2)
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We first refer to non-life insurance. When some peril is perceived, namely some
possible event causing a damage, the subject who suffers the potential damage can
resort to an insurance transfer. If the event occurs, the insured applies for the benefits,
namely a claim arises. The insurer has to assess the damage, and then to define
the amount of the benefit, that is, to settle the claim. Finally, the payment follows,
according to the policy conditions. A deeper analysis of some crucial steps of this
sequence will be presented in Chap. 9.

In life insurance, the sequence is much simpler. The event insured can be either
the death (within a stated period) or the survival of the insured (at some fixed time). In
some cases also the disablement can be allowed for. In the old life insurance policies
the benefit consisted in a fixed amount, stated in the policy. Conversely, in more
modern policies the (initial) amount is stated in the policy, but the amount itself can
vary throughout the policy duration because of linking to some index, for example,
expressing the inflation, or the yield from investments, and so on.

1.7.2 Some Examples

We refer to examples presented in Sects. 1.2.3, 1.2.4, 1.2.5, and discussed also in
Sect. 1.4, in order to introduce various features of the insurance products covering
the related risks.

A very simple example of insurance contract is provided by Case 2 (Possible loss
with fixed amount). The insurance cover may concern the following risks (as already
mentioned in Sect. 1.2.3):

1. a potential loss (e.g., a damage), which can occur just once in the period covered
by the insurance contract;

2. the possible death of the insured;
3. the possible disablement (in particular, resulting in a permanent disability condi-

tion) of the insured, for example, because of an accident.

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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The insurance product covering risk 1 can be placed in the context of non-life
insurance, whereas the product covering risk 2 belongs to life insurance. Risk 3 can
be covered by products in the framework of life or non-life insurance, also depending
on the particular legislative environment.

Insurance products covering the risk of Case 4b (Early death of an individual),
namely the death of the insured within a stated period of r years, represent a gener-
alization of products covering the risk 2 within Case 2. The insurance cover, clearly
in the field of life insurance, is usually called term insurance. It should be noted that,
in Case 4b time has greater importance than in Case 2, as the policy term may be
rather long, say 10 years. Then, the time value of money has to be accounted for
when calculating the premium for this insurance product.

When addressing risks inherent in Cases 3a (Damage/loss of a cargo) to 3e (Car
driver’s liability), more interesting insurance products are involved. First, the number
of claims in the insured period (say, one year) may be greater than one, unlike in
Case 2 (Possible loss with fixed amount). Secondly, the amount of each claim is
random. Further, in many cases the benefit paid does not coincide with the amount of
the damage or the liability, being lower and determined according to various policy
conditions. These aspects will be dealt with in Chap. 9.

The employer can transfer to an insurer the risk inherent in Case 3b (Disability
benefits; one-year period) and Case 3c (Disability benefits; multi-year period), via
an insurance contract providing disability benefits. In particular, a group insurance
can be purchased in order to transfer the set of risks pertaining to all the employees
of the firm. Conversely, a disability insurance cover can be purchased also by a single
individual, for example, a self-employed person.

An insurance product fulfilling the needs inherent in Case 4a (The need for
resources at retirement) is the pure endowment insurance. According to this contract
(clearly belonging to life insurance), the insured pays a premium at policy issue (or a
sequence of periodic premiums, from policy issue onwards), and will get the insured
amount at the stated maturity if alive at that time. Note that nothing is paid by the
insurer in the case of death before maturity. Time has a great importance (as we will
see, in particular, when discussing the premium calculation), as the policy duration
may be very long (say 10, or 20 years).

The risk of outliving the resources available at the time of retirement, which
defines Case 4c, can be covered by purchasing a specific insurance product, called
the life annuity. According to a life annuity contract, the insurer will pay a periodic
(say, monthly or yearly) amount while the insured, in this case called the annuitant,
is alive. So, the risk arising from the randomness of the annuitant’s lifetime is borne
by the insurer. Also in this case, time has a very important role in the structure of
the product, as the potential duration of the life annuity (which typically starts at
retirement age, say 65) can be of 25, 30 years or even more.

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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1.7.3 Pricing Insurance Products

The premiums paid by the insureds have to meet, according to a stated criterion,
the benefits paid by the insurer. We now assume that the premium is paid at policy
issue (thus, no splitting into a sequence of periodic premiums is allowed for), and
hence just one amount, namely a single premium, facing future benefits has to be
determined.

Although the insurance business is based on the management of pools of risks, we
start by approaching premium calculation on an individual basis, namely referring
to a single insured and the related insurance cover. Even though this approach might
seem incomplete, as it does not explicitly allow for pooling effects, it is simple,
and anyhow of great practical importance. Premium calculation in the framework of
pooling features will be focussed on in Chap. 2.

The (individual) premium must rely on some “summary” of the random benefits
which will be paid by the insurer. Thus, in some sense, the premium represents a
value of the benefits. As the benefits can consist, in general, of a sequence of random
amounts paid throughout the policy duration, we have to summarize:

1. with respect to time, by determining the random present value of the benefits,
referred at the time of policy issue;

2. with respect to randomness, using some typical values of the probability distrib-
ution of the random present value of the benefits, namely the expected value, the
standard deviation, and so on.

Step 1 requires the choice of the annual interest rate for discounting benefits (or,
more generally, the term structure of interest rates). It should be noted, however, that
when the policy duration is short (say, one year or less), we can skip this step as time
does not have a remarkable impact on the value of benefits.

Step 2 first requires appropriate statistical bases in order to construct the proba-
bility distribution of the random present value of the benefits, and then the choice of
typical values summarizing this distribution.

So far, we have only allowed for insurer’s costs consisting in the payment of ben-
efits. However, the insurer has to pay also expenses which are not directly connected
with the payment of benefits, for example, general expenses. It is common practice to
charge a share of these expenses to each insurance policy, via a convenient premium
increase, that is, the expense loading.

Finally, a further increase in the premium amount provides the insurer with a profit
margin, which should also cover the cost of the capital allocated to the specific line
of business.

The items listed above (i.e., interest rate, statistical basis, share of insurer’s
expenses, profit margin) constitute the ingredients of a “recipe”, called the premium
calculation principle, whose result is the actuarial premium. It is worth stressing
the meaning of “actuarial”. The output of the procedure described above is the pre-
mium calculated according to sound actuarial (i.e., financial and statistical) princi-
ples. Nonetheless, ingredients other than those so far considered can affect the actual

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Fig. 1.21 Pricing an insurance product

price of the insurance product. For example, competition on the insurance market
could suggest to lower the premium in order to launch a more appealing product. In
the following, we will not take into account these aspects.

Figure 1.21 summarizes the process leading to the price of an insurance product.

1.7.4 Premium Calculation

We now address some of the cases already discussed, in order to illustrate premium
calculations. In all the cases we disregard insurer’s expenses and the related com-
ponent of the premium. Thus, we focus on the calculation of the so-called net (or
pure) premiums. As regards the profit margin, specific aspects will be discussed in
the various cases.

We assume Case 2 (Possible loss with fixed amount) as the starting point for
focussing on premium calculation in a “basic” insurance cover. Since, in this case,
we assume a short policy duration, time can be disregarded. The benefit is given,
by definition, by the amount of the loss caused by the accident. In formal terms, the
random benefit is given by:

X =
{

x if E

0 if Ē
(1.7.1)
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that is, it coincides with the random loss defined by (1.2.1). Let p denote the (natural,
or realistic) probability of the event E ; hence, the expected value of the benefit is
given by:

E[X ] = x p (1.7.2)

and thus it coincides with the expected loss as defined by (1.4.2).
We now assume (provisionally) the expected value as the premium, P , for the

insurance cover, that is
P = x p (1.7.3)

What can we expect from the application of this very simple (and simplistic)
premium calculation principle? First, we note that, from the generic contract, the
insurer gains a profit, equal to P , in the case of no accident, whilst suffers a loss,
P −x , in the case of accident. In formal terms, the random result, Z , from the generic
contract can be defined as follows:

Z = P − X (1.7.4)

and, if the premium is given by (1.7.3), its expected value is equal to zero:

E[Z ] = P − E[X ] = 0 (1.7.5)

For this reason, the premium calculation according to (1.7.3) is called the equivalence
principle; the resulting premium can be called the equivalence premium.

Moving to a pool of n insured risks, namely a portfolio, claim-free contracts sub-
sidize contracts with a claim, according to the mutuality principle (see Fig. 1.22), and

0

0
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1
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MUTUALITY  policies with claim
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time 
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(b)

Fig. 1.22 Mutuality inside a pool of risks. Case 2 (Possible loss with fixed amount). a No claim,
b Claim
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the consequent equilibrium reflects, at the pool level, the rationale of the equivalence
principle. However, in a pool of n risks, the equilibrium is achieved if and only if the
actual number of claims, k, coincides with the expected number of claims, which is
given by n p. Indeed, the income perfectly balances the outgo if and only if

n P = k x (1.7.6)

that is
n x p = k x (1.7.7)

and hence k = n p. In general, arguments presented in Sect. 1.6.2 also hold when the
pool is managed by an insurer. In particular, it is worth noting that, especially when
the pool size n and the probability p are small, the expected number of claims n p
could be non-integer, and thus the perfect balance could never be achieved.

If the actual number of claims is greater than its expected value, the insurer suffers
a loss. In order to keep the probability of a loss at a reasonable level, a higher premium,
Π , must be charged, namely

Π = P + m (1.7.8)

where the term m (m > 0) denotes a “loading” of the premium, more precisely
the safety loading, as its purpose is to reach a higher degree of “safety” in the pool
management (see also Sect. 1.6.2). The amount Π is called the net premium (that is,
net of loadings for expenses), or pure premium.

It is interesting to assess the result from the generic contract when the premium
Π is charged to the contract itself. For the random result we have

Z = Π − X (1.7.9)

so that the expected result is given by

E[Z ] = Π − E[X ] = m (1.7.10)

Thus, the safety loading m also represents the expected profit from the generic con-
tract.

Moving again to the pool level, if the actual number of claims coincides (at least
approximately) with its expected number, the total safety loading cashed by the
insurer, i.e., n m, constitutes the profit produced by managing the pool. Thus, in
principle the purpose of the safety loading is twofold, as it enhances the safety level
and can provide the insurer with a profit margin.

As regards the magnitude of m, various formulae can be used to link the safety
loading, for example, to the riskiness of the contract (or the portfolio, as we will see
in Chap. 2). Indeed, premium calculation principles directly refer to the premium
Π , namely the premium including the safety loading. Here we just address some
aspects.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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As the safety loading must be linked, in some way and to some extent, to quanti-
tative features of the contract, we can set, for example,

Π = (1 + α)E[X ] (1.7.11)

(clearly, with α > 0) so that we have

m = α E[X ] = α x p (1.7.12)

Although formula (1.7.11) does not explicitly allow for riskiness, this very simple
premium principle is quite common in insurance practice. Moreover, an interesting
interpretation can be given. From (1.7.11) we have

Π = (1 + α) x p (1.7.13)

and, setting p′ = (1 + α) p, we find

Π = x p′ (1.7.14)

It turns out that the premium Π can be interpreted as the expected value of the
random loss calculated according to a risk “adjusted” probability p′ (p′ > p). So,
formula (1.7.14) constitutes a straightforward application of the valuation approach
based on risk-adjusted probabilities (see Sect. 1.4.7).

To conclude, we note the following points.

• If we choose a value for the loading parameter α, we are adopting an explicit
safety loading approach, as the loading component of the premium, i.e., α P , can
be recognized; see formulae (1.7.11) and (1.7.12). Of course, an explicit safety
loading can also be realized by adopting formulae other than (1.7.11) and (1.7.12);
examples can be derived introducing, for instance, the variance or the standard
deviation of X into the calculation of Π .

• Conversely, an implicit safety loading approach is adopted if we directly “rise”
the probability of loss. Clearly, the resulting magnitude of the safety loading, and
hence the expected profit E[Z ], can be calculated as follows:

m = Π − P = (p′ − p) x (1.7.15)

Case 4b (Early death of an individual) allows us to discuss the pricing of a life
insurance product which is very common in all the insurance markets, namely the
term insurance. We denote with C the sum assured, and assume that the sum is paid
at the end of the year of death, if the insured dies within the coverage period, say r
years.

We assume that the premium has to meet the expected present value of the random
benefit. We can refer to the approach sketched in Sect. 1.4.5 for Case 3c (Disability
benefits; multi-year period), and define the random present value, Y , of the benefit:
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Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C (1 + i)−1 if the insured dies in the first year

C (1 + i)−2 if the insured dies in the second year

. . . . . .

C (1 + i)−r if the insured dies in the r th year

0 if the insured is alive at time r

(1.7.16)

Then, we have to calculate the expected value E[Y ]. To this purpose, we need the
probabilities of the events listed in (1.7.16). We assume that these probabilities can
be derived from an appropriate statistical basis, and denote (according to the usual
actuarial notation) with h−1|1qx the probability that the insured, age x at policy issue,
dies between time h − 1 and h, i.e., during the hth year. Hence, according to the
equivalence principle, the premium P is given by:

P = E[Y ] = C
(
(1 + i)−1

0|1qx + (1 + i)−2
1|1qx + · · · + (1 + i)−r

r−1|1qx

)
(1.7.17)

From the generic contract, the insurer gains a profit if the insured is alive at
maturity (and hence no benefit is paid), whilst suffers a loss in the case of death
before maturity. Inside a pool of risks, claim-free contracts subsidize contracts with
claim, according to the mutuality principle. The mutuality mechanism works in a
manner rather similar to that of Case 2 (Possible loss with fixed amount), with
an appropriate generalization because of the duration of the contract, as shown in
Fig. 1.23.
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Fig. 1.23 Mutuality inside a pool of risks. Case 4b (Early death of an individual). a Alive at
maturity, b death at time t
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Clearly, no (explicit) safety loading appears in formula (1.7.17). However, a safety
loading can be implicitly included in the premium, adopting the following procedure.

• Assume that i is a realistic estimate of the interest rate (assumed to be constant
throughout the policy duration) obtained by the insurer investing the money, ini-
tially provided by the premium. Then, adopt an interest rate i ′ (i ′ < i) for dis-
counting the random benefit. Equivalently, this means that an interest rate lower
than that estimated on a realistic basis is credited to the policyholder.

• Assume that the h−1|1qx , h = 1, 2, . . . , r constitute a likely representation of the
age pattern of mortality of an insured person. Then, adopt as probabilities for the
calculation of the expected value the quantities h−1|1q ′

x , with h−1|1q ′
x > h−1|1qx ,

for h = 1, 2, . . . , r . Probabilities fulfilling this condition can be easily found, for
example, referring to the mortality of a population, rather than to the mortality of
a selected group of insureds.

Finally, calculate the premium as follows:

Π = C
(
(1 + i ′)−1

0|1q ′
x + (1 + i ′)−2

1|1q ′
x + · · · + (1 + i ′)−r

r−1|1q ′
x

)
(1.7.18)

Of course, we obtain Π > P .
The random present value, Z , of the result from the generic contract is given by

Z = Π − Y (1.7.19)

and its expected value is

E[Z ] = Π − E[Y ] = Π − P (1.7.20)

which also quantifies the (implicit) safety loading.
The needs inherent in Case 4a (The need for resources at retirement), described

in Sect. 1.2.5, can be faced by a pure endowment insurance. We suppose that just one
premium is paid (at time 0). Also in this case, we assume that the premium has to
meet the expected value of the random benefit.

We denote with S the sum insured, with r the policy term, and with r px the
probability of a person age x at policy issue being alive at time r .

The random present value, Y , of the benefit is given by

Y =
{

S (1 + i)−r if the insured is alive at time r

0 otherwise
(1.7.21)

The premium, P , according to the equivalence principle, is then given by

P = E[Y ] = S (1 + i)−r
r px (1.7.22)
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Fig. 1.24 Mutuality inside a pool of risks. Case 4a (The need for resources at retirement). a Alive
at maturity, b death at time t ⇒ not alive at maturity

Since obviously r px < 1, from (1.7.22) it follows that

S > P (1 + i)r (1.7.23)

Hence, the accumulation process which leads from P to the benefit S relies on the
following elements:

a. the financial component, namely the (guaranteed) interest credited to the insured
(with annual interest rate i);

b. the biometric component, namely the contributions from the policies which ter-
minate because of the death of the insured before maturity, and whose amount
cumulated up to the death is released and credited to policies still in force.

Thus, the mutuality works in this insurance product according to the mechanism
described under point b. Figure 1.24 illustrates the process leading to the sum payable
at maturity, in a pool of pure endowment insurances.

Of course, no (explicit) safety loading appears in formula (1.7.22). A safety load-
ing can be implicitly included in the premium, via a procedure similar to that adopted
for the term insurance. Thus, the premium can be calculated as follows:

Π = S (1 + i ′)−r
r p′

x (1.7.24)

where i ′ < i and r p′
x > r px . Note that, as mortality of people purchasing pure

endowment insurance is usually lower than that of the general population, the prob-
ability r p′

x cannot be drawn from a population mortality table, and then should be
evaluated ad hoc.
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The random present value of the result from the generic contract is given, as in
Case 4b, by formula (1.7.19), namely Z = Π − Y . Hence, when formula (1.7.24) is
adopted for premium calculation, the expected present value of the result is given by

E[Z ] = Π − E[Y ] = Π − P = S
(
(1 + i ′)−r

r p′
x − (1 + i)−r

r px
)

(1.7.25)

1.7.5 Technical Bases

In the insurance language, the expression technical basis denotes the set of data and
assumptions which constitute the ingredients for premium calculation (as well as
for other valuations, like those connected to the calculation of reserves, expected
profits, and so on). As we have disregarded so far insurer’s expenses and the related
premium components, we only focus on the elements needed for the calculation of
net premiums.

Referring to the insurance products discussed in Sect. 1.7.4, we note what follows.
In the “basic” insurance product, namely the cover for Case 2 (Possible loss with
fixed amount), the technical basis is simply given by the probability p. For the life
insurance products, i.e., the term insurance and the pure endowment insurance, the
technical basis consists of the interest rate i and the probabilities of dying or being
alive, namely the table from which these probabilities can be derived.

However, the adoption of an implicit safety loading for the life insurance products
implies that two different technical bases are involved, namely:

• the pricing basis, consisting of the interest rate i ′, and the probabilities q ′ or p′, also
called the first-order basis (or safe-side basis, or prudential basis, or conservative
basis);

• the scenario basis, or realistic basis, which consists of the interest rate i (or a time
structure of interest rates), and the probabilities q or p, and provides a reliable
description of the financial and biometric scenario; this basis is also called the
second-order basis.

Conversely, the (usual) adoption of an explicit safety loading in non-life insurance
leads to the coincidence of the pricing basis and the scenario basis.

We note that, in life insurance, premium calculation according to (1.7.18) and
(1.7.24) actually relies on the equivalence principle, though implemented according
to the first-order basis. Hence, the resulting premium is (formally) an equivalence
premium, although calculated by adopting a technical basis other than the realistic
one.

Remark It turns out that the expression “equivalence premium” is rather ambiguous. In what
follows, if not specified otherwise, the expression will be referred to premiums calculated with the
scenario (or realistic) basis.

Scenarios change over time, and then scenario bases should be updated. Also pric-
ing bases should be consequently updated. However, important differences between
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life and non-life insurance products should be stressed, as regards the feasibility of
an update in the pricing bases.

In non-life insurance, rating is usually stated on a one-year (or even shorter) basis;
see, for example, insurance covers related to Cases 3a (Damage/loss of a cargo), 3d
(A fire in a factory), and 3e (Car driver’s liability). Hence, premiums can be based, for
each insured, on the portfolio (and the market) experience. It follows that the same
insured can be charged, year by year, premiums updated according to the “collective”
experience.

Remark It is worth noting that, in non-life insurance, also “individual” claim experience can
be taken into account in determining the annual premium for any given insured risk. See also the
Remark in Sect. 2.2.7. Thus, various experience rating systems can be applied in pricing non-life
insurance products, as we will see in Chap. 9.

As regards life insurance, contracts usually imply multi-year guarantees. Of
course, new contracts can be priced according to an updated basis. Conversely, con-
tracts already issued do not allow premium adjustments. This is obviously true in
the case of single premium contracts. Further, arrangements based on periodic pre-
miums do not allow premium updating (in particular, an increase in premiums) if,
as is usual, all policy conditions are stated and guaranteed at policy issue. Hence, a
risk arises from the implied use of technical bases no longer appropriate.

1.7.6 Reserving

Let us refer to the insurance products covering the risks inherent in Case 4a (The need
for resources at retirement) and Case 4b (Early death of an individual). As stated in
Sect. 1.7.4, we assume that, in both the insurance products, the benefits are financed
by a single premium paid at the policy issue.

We note that, immediately after cashing the premium,

• the related amount (net of possible initial expenses) is available to the insurer, and
has to be invested in assets providing the insurer with a yield, hopefully higher
than the interest rate credited to the insured;

• a liability arises, because of the insurer’s obligations to the insureds.

Assets and liabilities generated by insurance contracts are the two aspects of the
“reserving process”. Thus, reserves (or provisions) must be set up because benefits are
deferred with respect to premiums. These “technical” reserves should not be confused
with the reserves which result from the accumulation of profits, not distributed to
shareholders, and constitute a part of the shareholder’s capital.

For each insurance contract, the behavior of the reserve over time strictly depends
on the type of benefits (and, in general, on the premium arrangement). Referring to
Case 4a and Case 4b, we can intuitively derive the time profile of the reserve from
the mechanism depicted in Figs. 1.23 and 1.24 respectively.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_9
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The interest/mutuality mechanism illustrated in Fig. 1.23 implies that, for each
insured alive, the reserve of the term insurance, which initially (time 0) is set equal
to the single premium Π , will be yearly increased by the interest credited to the
reserve itself, and decreased by the amounts drawn to pay death benefits according
to the mutuality principle. The annual net variation in the reserve is (usually) negative.
At maturity (time r ) the reserve is equal to 0, as there is no longer any obligations.
Hence the behavior of the reserve (restricted to the policy anniversaries) can be
represented as sketched in Fig. 1.25.

The reserve of a pure endowment, given the interest/mutuality mechanism
depicted in Fig. 1.24, will be yearly increased by the interest credited and the contri-
butions from the policies terminating because of the death of the insured. At maturity,
before the payment of the sum insured S, the reserve will be equal to the sum itself.
Thus, the behavior of the reserve can be represented as sketched in Fig. 1.26.

More complex reserving processes relate to premium arrangements based on
periodic premiums, instead of a single premium. Further, different problems lead to
reserving in non-life insurance.

Technical reserves witness the role of an insurance company (and a life insur-
ance company, in particular) as a financial intermediary. The insurer brings together
providers of funds (the insureds) and users of funds (private companies, public insti-
tutions, and so on): funds received while issuing insurance policies and cashing
premiums are invested in capital markets in bonds and stocks issued by the users.

We recall that, together with the financial intermediation, the insurer acts as an
intermediary in the risk transfer process, taking the risk of paying the guaranteed
benefits even when the premiums turn out to be insufficient because of adverse
deviations of the actual claim frequency from the expected one (see Sect. 1.6.3).

Fig. 1.25 Technical reserve
of a term insurance

time r0

Π

Fig. 1.26 Technical reserve
of a pure endowment

time r

S

Π
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1.8 References and Suggestions for Further Reading

In this Section, we only cite textbooks dealing with general aspects of risks, risk
management, and insurance. Studies particularly devoted to non-life insurance, life
insurance and post-retirement solutions will be cited in the relevant sections of the
following chapters.

An effective introduction to risk and insurance is provided by Outreville (1998).
The textbook by Vaughan and Vaughan (2008) places emphasis on insurance products
and the use of insurance within the risk management framework; life insurance,
pensions, and non-life insurance are dealt with.

Enterprise Risk Management (ERM) is specifically addressed by Lam (2003) and
Chapman (2006). The books by Doherty (2000), Harrington and Niehaus (1999), and
Williams et al. (1998) offer complete presentations of the risk management process,
the insurance transfers included. Practical guidelines to risk management in business
and industry are provided by Koller (1999). The process of analyzing and planning
for both personal risks and business risks is examined by Rejda (2010).

The books by Mangiero (2005) and Crouhy et al. (2001) focus on risk management
in financial institutions. Chapter 6 in Bellis et al. (2003) deals with managing risks,
also in insurance companies.

The report by IAA (2009) deals with ERM in the insurance industry, while Koller
(2011) is specifically devoted to risk management in life insurance.

Jorion (2007) is the classical reference on Value at Risk (VaR). The book by
Dowd (1998) deals with risk management and the VaR approach to risk management
problems, whereas Pearson (2002) mainly focusses on the use of VaR in portfolio
management. The book by Doff (2007) is specifically devoted to the risk management
process in the insurance activity, including life and non-life insurance.

The economic theory of risk and insurance and the industrial organization of
insurance markets is the main focus of Seog (2010).

Readers looking for a presentation of the principles of Financial Mathematics can
refer to Vaaler and Daniel (2007), Broverman (2008), and the first five chapters of
Luenberger (1998).

http://dx.doi.org/10.1007/978-3-319-21377-4_6


Chapter 2
Managing a Portfolio of Risks

2.1 Introduction

Basic ideas concerning risk pooling and risk transfer, presented in Chap. 1, are
progressed further in the present chapter, mainly with the following purposes:

1. to discuss key features of premium calculation when non-homogeneous port-
folios are concerned, namely portfolios consisting of risks with various claim
probabilities;

2. to analyze, more deeply, the riskiness of a portfolio and the tools which can be
used to face potential losses, in particular introducing the role of the shareholders’
capital;

3. to illustrate the possibility, for an insurance company, to transfer, in its turn, risk
of losses to another insurer, namely the possibility to resort to reinsurance;

4. to address dynamic aspects of the management of insurance portfolios in a multi-
year context.

As we will see, the actions undertaken by an insurer in order to deal with potential
losses (see points 1 and 3 above) constitute important examples of risk management
actions, in the specific framework of insurance risk management.

The “basic” insurance cover, namely the cover related to Case 2 (Possible loss
with fixed amount) widely used in Chap. 1, will still be addressed while dealing with
the issues mentioned above, in order to keep the presentation at an acceptable level
of complexity.

2.2 Rating: The Basics

2.2.1 Some Preliminary Ideas

We refer to a portfolio of “basic” insurance covers, as defined in Chap. 1 (see, in par-
ticular Case 2 in Sects. 1.2.3, 1.4.2, 1.6.1 and 1.7.2), and we focus on the calculation
of net premiums (i.e., not including loadings for expenses).

© Springer International Publishing Switzerland 2015
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We assume that, for each risk, the premium is proportional to the benefit (that
we also call the “sum insured”) paid in the case of a claim. Denoting (as in Chap. 1)
with x the benefit for the generic risk, the premium is then given by xp̂, where the
quantity p̂ represents the premium for one monetary unit of benefit. In the insurance
language, p̂ is commonly called the premium rate.

The following are natural choices:

a. set p̂ equal to the probability of a claim, p, as implied by the equivalence principle
(see, for example, Sect. 1.7.4 and formula (1.7.3) in particular), implemented on
the realistic basis;

b. set p̂ equal to the adjusted probability of a claim, p′, so that riskiness is accounted
for via an implicit safety loading (see formula (1.7.14) in particular).

Although we now do not deal with implicit safety loadings, the first choice is not
the only feasible one, as we will see in the next sections. Anyhow, the premium rate
should reflect, at least to some extent, the probability of a claim. As a consequence,
a number of premium rates, p̂1, p̂2, . . ., should be used for calculating the premiums
for risks with various claim probabilities. The set of rules which link the premium
rates to the claim probabilities constitutes a rating system. The rating system is the
basis underlying the construction of an insurance tariff (which also includes loading
for expenses, possible discounts, and so on).

2.2.2 The Portfolio Structure

We refer to a portfolio P which consists of n basic risks. As usual, let X(j) denote the
random loss and hence the benefit for the jth risk:

X(j) =
{

x(j) in the case of claim

0 otherwise
(2.2.1)

Let p(j) denote the (realistic) claim probability for the risk j:

p(j) = P[X(j) = x(j)] (2.2.2)

The total portfolio payout is given by:

X[P] =
n∑

j=1

X(j) (2.2.3)

and the portfolio result (whatever the premium calculation principle and the premium
rates) by:

Z [P] = Total premium income − X[P] (2.2.4)

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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The expected portfolio result is then expressed by:

E[Z [P]] = Total premium income − E[X[P]]

= Total premium income −
n∑

j=1

E[X(j)] (2.2.5)

2.2.3 Homogeneous Risks

First, we assume that the n risks, which constitute the portfolio, are homogeneous in
probability. Hence:

p(j) = p for j = 1, 2, . . . , n (2.2.6)

According to the equivalence principle, implemented on a realistic basis, the net
premium for the jth risk, P(j), is then given by:

P(j) = E[X(j)] = x(j) p (2.2.7)

Thus, the premium rate is equal to the (realistic) probability p, so that no safety
loading is included in the premium.

At the portfolio level, the premiums expressed by (2.2.7) lead to the so-called
technical equilibrium (clearly, in terms of expected value). Indeed, we have

E[Z [P]] =
n∑

j=1

P(j) −
n∑

j=1

E[X(j)] = 0 (2.2.8)

Thus:
Total premium income = Total expected outgo (2.2.9)

Equation (2.2.9) expresses the equivalence principle at the portfolio level.

2.2.4 Non-homogeneous Risks

We now shift to non-homogeneous portfolios, namely portfolios consisting of risks
with various claim probabilities. For simplicity, we refer to a portfolio P which
consists of n1 risks with claim probability p1, and n2 risks with claim probability p2.
Let n = n1 + n2. Without loss of generality, we assume p1 < p2.
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The portfolio P can be split into two homogeneous sub-portfolios, P1 and P2,
whose total payments are respectively given by:

X[P1] =
n1∑

j=1

X(j) (2.2.10a)

X[P2] =
n∑

j=n1+1

X(j) (2.2.10b)

Further, the related random results are given by:

Z [P1] = Total premium income in P1 − X[P1] (2.2.11a)

Z [P2] = Total premium income in P2 − X[P2] (2.2.11b)

The obvious choice for premium calculation consists in charging each risk with
a premium calculated according to the related claim probability. This means that we
set:

• in the sub-portfolio P1, i.e., for j = 1, 2, . . . , n1:

P(j) = E[X(j)] = x(j) p1 (2.2.12)

• in the sub-portfolio P2, i.e., for j = n1 + 1, n1 + 2, . . . , n:

P(j) = E[X(j)] = x(j) p2 (2.2.13)

We have:

E[Z [P1]] =
n1∑

j=1

P(j) −
n1∑

j=1

E[X(j)] = 0 (2.2.14a)

E[Z [P2]] =
n∑

j=n1+1

P(j) −
n∑

j=n1+1

E[X(j)] = 0 (2.2.14b)

The random result for the portfolio P is given by:

Z [P] = Z [P1] + Z [P2] (2.2.15)

We then find:
E[Z [P]] = E[Z [P1]] + E[Z [P2]] = 0 (2.2.16)

Hence, the premiums defined by (2.2.12) and (2.2.13) ensure the technical equi-
librium, as expressed by (2.2.9), in both the sub-portfolios P1 and P2, and then, of
course, in the whole portfolio P.
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The technical equilibrium within each sub-portfolio is the natural consequence
of adopting the equivalence principle, and implementing this principle with the
appropriate claim probabilities. Conversely, the target of achieving the technical
equilibrium within each sub-portfolio can be interpreted as a constraint in the pre-
mium calculation, and, as such, can be “relaxed,” or replaced by weaker constraints.

In particular, we can assume that our aim is charging all the risks with the same
premium rate, p̄. This premium rate cannot ensure the equilibrium in each sub-
portfolio; hence, the target is now the equilibrium within the whole portfolio P.
Clearly, we will find p1 < p̄ < p2.

Possible aims of such a rating system are the following ones:

• simplify the insurance tariff;
• charge “reasonable” premiums to risks with a high claim probability, transferring

part of the cost to risks with a low claim probability.

We also note that such a system may be mandatory, i.e., imposed by the insurance
regulation, for some specific lines of business.

The premium for the jth risk, j = 1, 2, . . . , n, is then given by

P(j) = x(j) p̄ (2.2.17)

We have:

Z [P] =
n∑

j=1

P(j) −
n∑

j=1

X(j) = p̄
n∑

j=1

x(j) −
n∑

j=1

X(j) (2.2.18)

and:

E[Z [P]] = p̄
n∑

j=1

x(j) −
⎡
⎣p1

n1∑
j=1

x(j) + p2

n∑
j=n1+1

x(j)

⎤
⎦ (2.2.19)

Our target is the technical equilibrium in the portfolio P:

E[Z [P]] = 0 (2.2.20)

We then find:

p̄
n∑

j=1

x(j) −
⎡
⎣p1

n1∑
j=1

x(j) + p2

n∑
j=n1+1

x(j)

⎤
⎦ = 0 (2.2.21)
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and finally:

p̄ =
p1

∑n1

j=1
x(j) + p2

∑n

j=n1+1
x(j)

∑n

j=1
x(j)

(2.2.22)

Hence, the premium rate p̄ is the arithmetic weighted average of the probabilities
p1 and p2, and the weights are given by the total amount of sums insured in the
sub-portfolios P1 and P2 respectively.

It is interesting to note that, if all the sums insured are equal to x, formula (2.2.22)
reduces to

p̄ = p1
n1

n
+ p2

n2

n
(2.2.23)

Thus, the premium rate p̄ is the arithmetic weighted average of the probabilities p1
and p2, weighted by the sub-portfolio sizes.

2.2.5 A More General Rating System

Rating systems defined by formulae (2.2.12), (2.2.13) and, respectively, (2.2.17)
constitute particular cases of a more general structure.

In order to define a rather general rating system, let p̄1, p̄2 denote two premium
rates, charged to risks with claim probability p1, p2 respectively. Premiums are then
given by the following formulae:

• in the sub-portfolio P1, i.e., for j = 1, 2, . . . , n1:

P(j) = x(j) p̄1 (2.2.24)

• in the sub-portfolio P2, i.e., for j = n1 + 1, n1 + 2, . . . , n:

P(j) = x(j) p̄2 (2.2.25)

Let the following inequalities hold:

p1 ≤ p̄1 ≤ p̄2 ≤ p2 (2.2.26)

Assume that the premium rates p̄1 and p̄2 ensure the technical equilibrium in the
portfolio P, that is, E[Z [P]] = 0. Then, p̄1 and p̄2 must be solutions of the following
equation:



2.2 Rating: The Basics 81

p̄1

n1∑
j=1

x(j) + p̄2

n∑
j=n1+1

x(j) −
⎡
⎣p1

n1∑
j=1

x(j) + p2

n∑
j=n1+1

x(j)

⎤
⎦ = 0 (2.2.27)

In particular, if all the sums insured are equal to x, formula (2.2.27) reduces to:

p̄1n1 + p̄2n2 = p1n1 + p2n2 (2.2.28)

which can also be written as follows:

p̄1
n1

n
+ p̄2

n2

n
= p1

n1

n
+ p2

n2

n
(2.2.29)

Thus, the weighted arithmetic mean of the premium rates p̄1 and p̄2 must be equal
to the weighted arithmetic mean of the claim probabilities p1 and p2, with the same
weights.

We note that:

• setting p̄1 = p1 and p̄2 = p2, we find the “natural” rating system, with premiums
differentiated according to the claim probabilities (see (2.2.12) and (2.2.13));

• setting p̄1 = p̄2, we find the system with just one premium rate (see (2.2.17));
• to find other rating systems, only the cases such that

p1 < p̄1 < p̄2 < p2 (2.2.30)

have to be considered.

We note, from Eqs. (2.2.27) and (2.2.28), that the unknowns p̄1 and p̄2 cannot
be univocally determined. Then, an additional condition is required, for example,
p̄1 = αp̄2, or p̄1 = p̄2 − β, with α < 1, β > 0, and such that inequalities (2.2.30)
are fulfilled.

Clearly, the aim of such a rating system is to keep premium rates differentiated,
while charging a “reasonable” premium to risks with a higher claim probability, and
then transferring part of the cost to risks with a lower probability.

Remark Although inequalities (2.2.30) are quite reasonable, in principle we could also assume,

p̄1 < p1 < p2 < p̄2 (2.2.31)

that is, aiming to “reward” risks with a low probability, while “penalizing” risks with a high prob-
ability.

2.2.6 Rating Systems and Technical Equilibrium

When rating systems other than those constructed by setting the premium rates equal
to the claim probabilities are adopted, problems concerning the technical equilibrium
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may arise. To discuss such problems, we refer, for simplicity, to a portfolio in which
all the sums insured are equal to x.

Looking at Eqs. (2.2.23) and (2.2.28), we note that the premium rate p̄ and the
premium rates p̄1, p̄2 depend on the sizes n1 and n2 that we have assumed for the
two sub-portfolios P1 and P2. However, when the premiums, based on the premium
rate p̄ or p̄1, p̄2, are charged to a group of new applicants for the insurance cover, the
actual sizes of the sub-groups of risks with claim probability p1 and p2 respectively
are unknown. Thus, n1 and n2 should only be understood as estimates of the actual
numbers of applicants.

Let n∗
1, n∗

2 denote the actual sizes of the sub-groups, and n∗ = n∗
1 + n∗

2. If

n∗
1

n∗ = n1

n

(
and then

n∗
2

n∗ = n2

n

)
(2.2.32)

the technical equilibrium is ensured, as the relative sizes of the actual groups coincide
with the estimated relative sizes (see formulae (2.2.23) and (2.2.29)).

Conversely, assume that

n∗
1

n∗ �= n1

n

(
and then

n∗
2

n∗ �= n2

n

)
(2.2.33)

In this case, the technical equilibrium is not achieved. In particular, if

n∗
1

n∗ <
n1

n

(
and then

n∗
2

n∗ >
n2

n

)
(2.2.34)

a negative expected result follows. In formal terms, referring to the portfolio P, the
following relations hold.

• In the case of one premium rate p̄:

Total premium income = xn∗ p̄ = x (n∗
1 p̄ + n∗

2 p̄)

Total expected outgo = x (n∗
1 p1 + n∗

2 p2)

Expected portfolio result = x
(
n∗

1 (p̄ − p1) + n∗
2 (p̄ − p2)

)
• In the case of two premium rates p̄1, p̄2:

Total premium income = x (n∗
1 p̄1 + n∗

2 p̄2)

Total expected outgo = x (n∗
1 p1 + n∗

2 p2)

Expected portfolio result = x
(
n∗

1 (p̄1 − p1) + n∗
2 (p̄2 − p2)

)
Example 2.2.1 Two different rating systems, A and B, are defined. Both the systems
are constructed by assuming that the number of risks with the lower probability, p1,
is twice the number of risks with the higher probability, p2, that is, n1 = 2n2; see
Table 2.1.
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Table 2.1 Claim probabilities and premium rates

n1 n2 p1 p2 Rating A Rating B

p̄ p̄1 p̄2

4 000 2 000 0.005 0.008 0.006 0.0055 0.007

Table 2.2 Expected outgo, premium income, and expected portfolio result

n∗
1 n∗

2 Expected
outgo

Premium income Expected result

Rating A Rating B Rating A Rating B

8 000 4 000 72 000 72 000 72 000 0 0

3 000 3 000 39 000 36 000 37 500 −3 000 −1 500

Table 2.2 shows the total expected outgo, the total premium income, and the
expected portfolio result, referred to two actual portfolios P, the first one leading
to an equilibrium situation, whilst the second one (for which inequalities (2.2.34)
hold) implies an expected outgo greater than the premium income, whatever the
rating system adopted, and hence a negative expected result. As regards the portfolio
leading to a non-equilibrium situation, the system A obviously implies a higher
loss. ❑

A practical problem: is the situation described by inequalities (2.2.34) a likely
one? The following points provide an answer to this critical question.

• The (expected) equilibrium at the portfolio level is based on a transfer of money
(shares of premiums) from insureds charged with a premium higher than their
“true” premium, i.e., the premium resulting from the probability of a claim, to
insureds charged with a premium lower than their “true” premium. In the technical
language, such a transfer of money is called solidarity (among the insureds). In
particular, referring for simplicity to the case of one premium rate p̄, the generic
insured with claim probability p1 transfers to the pool the amount

S(j)
1 = x(j) p̄ − x(j) p1 > 0 (2.2.35)

whereas the pool transfers to the generic insured with claim probability p2 the
amount

S(j)
2 = x(j) p̄ − x(j) p2 < 0 (2.2.36)

The amounts S(j)
1 and S(j)

2 are usually called solidarity premiums (positive and
negative, respectively).

• Rating systems based on solidarity may cause self-selection, as individuals forced
to provide solidarity to other individuals can reject the policy, moving to other
insurance solutions (or, more generally, risk management actions). The resulting
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effect is a portfolio with a (relative) prevalence of risks with the higher claim prob-
ability. Thus, from the insurer’s point of view, self-selection constitutes adverse
selection.

• The severity of this self-selection phenomenon depends on how people perceive the
solidarity mechanism, as well as on the premium systems adopted by competitors
in the insurance market.

• So, in practice, solidarity mechanisms can work provided that they are manda-
tory (for example, imposed by insurance regulation) or they constitute a common
market practice.

2.2.7 From Risk Factors to Rating Classes

The rating system defined by formulae (2.2.17)–(2.2.23) adopts one premium rate p̄
versus two claim probabilities p1, p2. The underlying rationale can be extended to
more general situations.

When we define a “population,” we have to adopt a rigorous criterion to decide
whether a given “individual” belongs to the population (i.e., is a “member” of the
population) or not. For example, the population can be defined as consisting of all
males currently alive, born in Italy in the period 1950–1970. Although the definition
is rigorous, we are aware that the population consequently defined is rather hetero-
geneous, in particular with regard to the risk of death. Indeed, individuals can have
various ages, can be more or less healthy, can have a more or less risky occupation,
etc. Thus, we can recognize various risk factors(age, current health conditions, occu-
pation, and so on), which should be taken into account when stating, for example,
the individual probability of dying within one year.

Problems concerning heterogeneity and the use of risk factors in life and non-life
insurance calculations will specifically be addressed in Chaps. 3, 4 and 9. Now, we
just provide a first insight into the role of risk factors in the pricing procedures.

We assume that each risk factor can take one out of a given (integer) number of
“values,” either scalar (e.g., the age) or nominal (e.g., the gender). Figure 2.1 refers
to a population for which three risk factors have been initially recognized, with 4,
3, and 2 values, respectively (each factor is represented by a coordinate). Thus, the
population has been split into 4 × 3 × 2 = 24 risk classes (see panel (a)).

In principle, a specific claim probability, and hence a specific premium rate, should
be determined for each risk class. However, the resulting tariff structure could be
considered too complex, or some premium rates too high. Then, a first simplification
could be obtained disregarding one of the risk factors; see Fig. 2.1, panel (b), which
shows that risk factor 3 has been disregarded. A further grouping of risk classes is
illustrated by panel (c), in which we see the grouping of some values of risk factors
1 and 2. As the final result, the population is split into 3 × 2 = 6 rating classes.

When two or more risk classes are aggregated into one rating class, some insureds
pay a premium higher than their “true” premium, i.e., the premium resulting from
the risk classification, while other insureds pay a premium lower than their “true”

http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_9
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Fig. 2.1 From risk factors to
rating classes
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premium. Thus, the equilibrium inside a rating class relies on a money transfer among
individuals belonging to different risk classes. As mentioned above, this transfer is
usually called solidarity (among the insureds).

When the rating classes coincide with the risk classes, the rating system is “tai-
lored” on the features of each insured risk (at least to the extent these features can
be detected), and no solidarity transfer works. Conversely, the solidarity effect is
stronger when the number of rating classes is smaller, compared with the number of
risk classes.

Remark Even if the rating classes coincide with the risk classes, a “residual” heterogeneity still
affects the insured risks inside each rating class, because of the presence of unobservable risk factors;
for example, genetic characteristics as regards mortality, personal attitude to cause accidents in car
insurance, and so on. Thus, an unavoidable degree of solidarity among insured risks is implied by
unobservable risk factors, whatever the number of rating classes.

The residual heterogeneity (and hence the solidarity) can be reduced if the individual claim
experience allows the insurer to “learn” about the features of each insured risk. In particular, in
non-life insurance rating classes can be defined, for example, accounting for the numbers of claims
experienced in the previous years. So, an individual experience rating (also called merit rating in
car insurance) determines an a-posteriori risk classification, whereas an a-priori risk classification,
based on rating factors known in advance, works at policy issue. This topic will be specifically dealt
with in Chap. 9.

In the field of private insurance, an extreme case is achieved when one rating
class only relates to a large number of underlying risk classes. Outside the area of

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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private insurance, the solidarity principle is commonly applied in social security. In
this field, the extreme case arises when the whole national population contribute to
fund the benefits, even if only a part of the population itself is eligible to receive
benefits; so, the burden of insurance is shared among the community.

2.2.8 Cross-Subsidy: Mutuality and Solidarity

Mutuality and solidarity constitute two forms of cross-subsidy among the insureds
(or, in general, among the members of a pool). However, some important points
should be stressed in order to single out the different features of these forms of
cross-subsidy.

First, mutuality is an implication of the pooling process (and, in particular, of the
risk transfer to an insurance company), as clearly emerges in Sect. 1.7.4. Conversely,
solidarity among the insureds is the straight consequence of the adoption of a rating
system with a number of rating classes smaller than the number of risk classes. So,
the presence and the magnitude of solidarity effects strictly depend on the tariff struc-
ture (see, in particular, the amounts of solidarity premiums, expressed by formulae
(2.2.35) and (2.2.36)).

Second, it is worth noting that the mutuality affects the benefit payment phase, so
that the “direction” and “measure” of the mutuality effect in a portfolio (or, in general,
in a pool of risks) are only known ex-post. Conversely, the solidarity (possibly) affects
the premium income phase, and hence its direction and measure are known ex-ante.

Figure 2.2 illustrates cross-subsidy in a pool of insured risks.

Individual risks Pool of risks 

Underwriting 

Pool split into rating classes 

Claim settlement 
CLAIMS

CLAIM FREE

MUTUALITY SOLIDARITY 

Applying the tariff  

Fig. 2.2 Mutuality and solidarity in a pool of insured risks

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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2.3 Facing Portfolio Riskiness

Risks inherent in the results obtained by managing a pool of risks have been already
discussed in Chap. 1 (see Sect. 1.6). We now turn back on these issues, referring to a
portfolio of insured risks. In particular, we focus on the following aspects:

• what are the “components” of the risk inherent in portfolio outgoes (and hence in
portfolio results);

• what are the elements of an appropriate toolkit for managing this risk.

2.3.1 Expected Outgo versus Actual Outgo

We consider a portfolio of n basic insurance covers (see Case 2 in Sects. 1.7.2 and
1.7.4), in which all the sums insured are equal to x, and we assume that the portfolio is
homogeneous with respect to the claim probability; we denote with p this probability.

Let f denote the observed relative claim frequency, i.e., f = k

n
, where k is the

observed number of claims. If f = p, the equilibrium is actually achieved (of course,
provided that the premium rate is set equal to p), as the actual outgo, given by nxf ,
is equal to the expected outgo, nxp, and hence to the premium income. Indeed, we
have

n∑
j=1

P(j) = nxp = nxf (2.3.1)

Conversely, we may find that f �= p, and clearly our concern is for the case f > p.
Figure 2.3 sketches three portfolio stories in which we find that, in various years,
f �= p. Reasons underlying this inequality may be quite different in the three stories.

• In Fig. 2.3a, we see that the observed claim frequency randomly fluctuates around
the probability, namely around the expected frequency. This possibility is usually
denoted as the risk of random fluctuations, or the process risk.
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Fig. 2.3 Observed frequency versus probability

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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• On the contrary, Fig. 2.3b depicts a situation in which, besides random fluctuations,
we see “systematic” deviations from the expected frequency; likely, this occurs
because the assessment of the probability p does not capture the true nature of the
insured risks. This possibility is usually called the risk of systematic deviations, or
the uncertainty risk, referring to the uncertainty in the assessment of the expected
frequency.

• In Fig. 2.3c, the effect of a “catastrophe,” which causes a huge number of claims in a
given year, clearly appears. This possibility is commonly known as the catastrophe
risk.

2.3.2 Risk Components and Risk Factors

Three risk components have been singled out, namely: the risk of random fluctuations,
the risk of systematic deviations, and the catastrophe risk.

All the components impact on the monetary results of the portfolio. However, the
severity of the impact strongly depends on the portfolio structure, and the portfolio
size in particular.

• The severity of the risk of random fluctuations decreases, in relative terms, as
the portfolio size increases. This feature is the direct consequence of the risk
pooling (see Sect. 1.6.1), and thus is commonly known as the pooling effect, or the
diversification via pooling. Nevertheless, the distribution of the sums insured plays
an important role in determining the absolute and the relative portfolio riskiness,
as we will see in Sects. 2.3.3 and 2.3.4.

• The severity of the risk of systematic deviations is independent, in relative terms,
of the portfolio size (as we will see in Sect. 2.3.11). Indeed, systematic deviations
affect the pool as an aggregate. Conversely, the total impact on portfolio results
increases as the portfolio size increases.

• The severity of the catastrophe risk can be higher due, for example, to a high
concentration of insured risks within a geographic area.

The portfolio size, the distribution of the sums insured, and the geographic con-
centration are portfolio characteristics which determine a more or less severe impact
of risk causes and related components on the total payout. These (and other) charac-
teristics are named risk factors.

Remark We note that the expression “risk factors” has a rather broad meaning, as it can be
used to denote characteristics of individual risks (see Sect. 2.2.7), as well as to denote portfolio
characteristics (as mentioned in the present section). In both the cases, however, a risk factor
determines some quantitative features of a monetary result: for example, the probability of a loss
for an individual risk, and the probability distribution of the total payout for a portfolio of risks.

In the following sections we focus on the risk of random fluctuations.

Example 2.3.1 The distributions of the sums insured in three portfolios are sketched
in Fig. 2.4. We assume that the average sum insured, x̄, and the number of risks, n, are

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 2.4 Distribution of the sums insured in three portfolios

the same in the three portfolios. In spite of these common characteristics, intuitively
the risk of random fluctuations has an impact which only depends on the size n in
Portfolio 1, a more severe impact in Portfolio 2, and an even more severe impact
in Portfolio 3. Indeed, the actual total payout in Portfolio 1 only depends on the
number of claims in the portfolio itself, whilst it does not depend on which policies
are affected by claims. Conversely, in Portfolios 2 and 3 the total payout does depend
on which policies are affected by claims, and, in particular, in Portfolio 3 the huge
amount insured in one policy can jeopardize the pooling effect. These aspects will
be analyzed in Sects. 2.3.3 and 2.3.4. ❑

2.3.3 Risk Assessment

We still refer to a portfolio of n basic insurance covers; for the generic cover, the
insurer’s random payment is given by

X(j) =
{

x(j) in the case of claim

0 otherwise
(2.3.2)

where x(j) is the sum insured.
We assume that:

• the portfolio is homogeneous with respect to the claim probability, denoted with
p;

• claims and hence random numbers X(j) are independent each other.

Let P(j) denote the expected value of X(j) (namely, the equivalence premium
according to the realistic basis), thus

P(j) = E[X(j)] = x(j) p (2.3.3)
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Moving to the portfolio level, we denote with X[P] the total payment

X[P] =
n∑

j=1

X(j) (2.3.4)

whose expected value, denoted by P[P], is given by

P[P] = E[X[P]] = p
n∑

j=1

x(j) =
n∑

j=1

P(j) (2.3.5)

Our first aim is to quantify the portfolio riskiness, in order to determine an appro-
priate safety loading. In general, a basic information about riskiness is obviously
provided by the variance of the total payment.

For the generic insured risk, the variance of the random payment is given by

Var[X(j)] = (x(j))2 p (1 − p) (2.3.6)

Then, for the total payment, thanks to the independence assumption, we find

Var[X[P]] =
n∑

j=1

Var[X(j)] = p (1 − p)

n∑
j=1

(x(j))2 (2.3.7)

It is interesting to analyze the link between the variance of the total payment and
the structure of the portfolio itself, in terms of the sums insured. We denote with x̄
the average sum insured, namely

x̄ = 1

n

n∑
j=1

x(j) (2.3.8)

and with x̄(2) the second moment of the distribution of the sums insured, that is,

x̄(2) = 1

n

n∑
j=1

(x(j))2 (2.3.9)

Finally, we denote with v the variance of the distribution of the sums insured

v = 1

n

n∑
j=1

(x(j) − x̄)2 (2.3.10)
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which can also be expressed as follows:

v = x̄(2) − (x̄)2 (2.3.11)

From relations (2.3.7)–(2.3.11), it follows that

Var[X[P]] = np (1 − p) x̄(2) = np (1 − p)
(

v + (x̄)2
)

(2.3.12)

Thus, for a given portfolio size n and a given average sum insured x̄ (and hence a
given value of (x̄)2), the variance of the total payment is lower when the variance of
the sums insured, v, is lower. In particular, we find the minimum variance Var[X[P]]
when v = 0, that is, when all the policies have the same sum insured. Note that, in this
case, the actual total payment (and hence the actual portfolio result) only depends
on the number of claims in the portfolio, whilst it does not depend on which policies
are affected by claims (see also Example 2.3.1).

2.3.4 The Risk Index

As shown in Sect. 1.6.1, an interesting insight into the riskiness of a pool of risks
(and thus a portfolio of insured risks, in particular) is given by the coefficient of
variation of the total payment, X[P]. The coefficient of variation provides a measure
of relative riskiness, i.e., riskiness related to the expected value of the total payment.
As already mentioned, the coefficient of variation is also called, in the actuarial
literature, the risk index. We will denote it with ρ (reference to the portfolio payment
X[P] is understood). Hence,

ρ = CV[X[P]] =
√
Var[X[P]]
E[X[P]] = σ [P]

P[P] (2.3.13)

where σ [P] denotes the standard deviation of the total payment.
We now analyze some aspects of the link between the risk index and the portfolio

structure. We still refer to the portfolio defined in Sect. 2.3.3.
From Eqs. (2.3.5) and (2.3.7), we find

ρ =
√

1 − p

p

√∑n
j=1(x

(j))2∑n
j=1 x(j)

=
√

1 − p

np

√
x̄(2)

x̄
(2.3.14)

From (2.3.14) we note that, for a given portfolio size n and a given average sum
insured x̄, the risk index ρ is higher when x̄(2) is higher, and thus the variance v
of the distribution of the sums insured is higher (see the conclusions after formula
(2.3.12)).

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Example 2.3.2 Tables 2.3, 2.4 and 2.5 refer to three portfolios, all with the same
average sum insured, x̄ = 1 000; in all the portfolios, the claim probability is
p = 0.005. However, the three portfolios have different sizes, or structures in terms
of sums insured. Various typical values (among which the risk index) summarize the
total payment and the inherent risk.

By comparing the results in Table 2.3 to those in Table 2.4, we clearly perceive
the magnitude of the pooling effect. Conversely, by comparing results in Table 2.3
to those in Table 2.5, we can see the effect of heterogeneity in the sums insured. ❑

What can we say, in general terms, about the range of values of the risk index ρ,
for a given portfolio size n and a given claim probability p? First, it can be proved
that √

n

n
≤
√∑n

j=1(x
(j))2∑n

j=1 x(j)
≤ 1 (2.3.15)

Then, from these inequalities, it follows that

√
1 − p

np
≤ ρ ≤

√
1 − p

p
(2.3.16)

As regards the lower bound, we have already shown that it is actually reached if
(and only if) all sums insured are equal (see Sect. 1.6.1). As regards the upper bound,
note that, if one sum insured “diverges” (ceteris paribus), we have:

√∑n
j=1(x

(j))2∑n
j=1 x(j)

→ 1 (2.3.17)

and hence

ρ →
√

1 − p

p
(2.3.18)

Table 2.3 Portfolio A

Number of policies Sum insured Typical values

100 000 1 000

x̄ = 1 000

v = 0

P[P] = E[X[P]] = 500 000

σ [P] = √
Var[X[P]] = 22 304

ρ = σ [P]

P[P] = 0.0446

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Table 2.4 Portfolio B

Number of policies Sum insured Typical values

10 000 1 000

x̄ = 1 000

v = 0

P[P] = E[X[P]] = 50 000

σ [P] = √
Var[X[P]] = 7 053

ρ = σ [P]

P[P] = 0.1411

Table 2.5 Portfolio C

Number of policies Sum insured Typical values

70 000 500

25 000 1 000

5 000 8 000

x̄ = 1 000

v = 2 625 000

P[P] = E[X[P]] = 500 000

σ [P] = √
Var[X[P]] = 42 467

ρ = σ [P]

P[P] = 0.0849

In more practical terms, when just one sum insured is extremely high if compared
to the other sums, the advantage provided by the portfolio size vanishes, so that the
riskiness of the portfolio is roughly equal to the riskiness of a portfolio consisting of
just one policy (see also Example 2.3.1).

Hence, we can conclude stating that the relative riskiness reduces as the portfolio
size increases, provided that each individual position (and the related contribution to
the riskiness) becomes negligible in respect of the overall portfolio.

2.3.5 The Probability Distribution of the Total Payment

More information about the riskiness of a portfolio can be achieved via the probability
distribution of the total payment X[P]. Deriving this probability distribution is, in
general, a rather complex problem. Then, we restrict our attention to a particular
case, and to the use of approximations.

We assume that our portfolio, which consists of n independent risks, is homo-
geneous with respect to both the probability, p, and the sum insured, x. Hence, the
random total payment can be expressed as follows:

X[P] = Kx (2.3.19)
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where K denotes the random number of claims in the portfolio.
Thanks to the hypothesis of independence, K has a binomial distribution, thus

K ∼ Bin(n, p) (2.3.20)

and hence

P[X[P] = kx] = P[K = k] =
(

n

k

)
pk (1 − p)n−k; k = 0, 1, . . . , n (2.3.21)

In order to get more tractable calculation procedures, various approximations to
the binomial distribution can be used. In particular, for a large size n and small
probability p, the Poisson distribution can be adopted. Thus, we can assume

K ∼ Pois(λ) (2.3.22)

and hence

P[X[P] = kx] = e−λ λk

k! ; k = 0, 1, . . . (2.3.23)

with

λ = np (=expected number of claims in the portfolio) (2.3.24)

Further, the normal distribution provides an approximation, which relies on the
Central Limit Theorem. Then,

X[P] ∼ N (P[P], σ [P]) (2.3.25)

where

P[P] = E[X[P]] = n x p (2.3.26)

σ [P] =
√
Var[X[P]] = x

√
np (1 − p) (2.3.27)

Hence

X[P] − P[P]

σ [P] ∼ N (0, 1) (2.3.28)

So, we have, for example,

P

[
z1 <

X[P] − P[P]

σ [P] ≤ z2

]
= �N (0,1)(z2) − �N (0,1)(z1) (2.3.29)
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where �N (0,1)(z) denotes the cumulative distribution function, namely

�N (0,1)(z) = 1√
2 π

∫ z

−∞
e− u2

2 du (2.3.30)

The normal approximation can also be adopted in more general cases, e.g., for
portfolios of insured risks with various sums insured and/or various probabilities of
claim.

The goodness of some approximations is briefly discussed via numerical exam-
ples, in the Appendix of this chapter.

Some interesting results can be achieved looking at how the risk index enters
probabilities concerning the total payment X[P]. For example, consider the following
probability:

ψδ = P

[
(1 − δ) P[P] < X[P] ≤ (1 + δ) P[P]] (2.3.31)

(see Fig. 2.5). The probability on the right-hand side of (2.3.31) can be expressed in
terms of the risk index ρ. Indeed, we find

ψδ = P

[
−δ

1

ρ
<

X[P] − P[P]

σ [P] ≤ δ
1

ρ

]
(2.3.32)

and then:

ψδ = �

(
δ

1

ρ

)
− �

(
−δ

1

ρ

)
(2.3.33)

where � denotes the cumulative distribution function of the standardized random

variable X[P]−P[P]
σ [P] . From (2.3.33) we see that, for any given value of δ, the lower is

ρ the higher is ψδ . Thus, the “concentration” increases as the risk index decreases,
e.g., because the size of the portfolio increases (see also Table 2.6 in Example 2.3.3).

Fig. 2.5 Probability
distribution of the random
payment X[P]

δ

0 P[P]

νδ

(1-δ )P[P] (1+δ )P[P]

ψ
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Table 2.6 The concentration around the expected value

n ψδ

δ = 0.10 δ = 0.05 δ = 0.01

100 0.06983 0.03495 0.00699

1 000 0.17737 0.08924 0.01788

10 000 0.61920 0.33877 0.06984

Focussing on “downside” payments is clearly of great interest when assessing the
riskiness of a portfolio. To this purpose, probabilities like

π(t) = P

[
X[P] > P[P] + t

]
(2.3.34)

should be addressed; t represents a critical “threshold,” which expresses the insurer’s
capability to meet the total payment. For example, consider the probability νδ defined
as follows:

νδ = π
(
δP[P]) = P

[
X[P] > (1 + δ) P[P]] (2.3.35)

in which the threshold t is expressed in terms of the expected value P[P] (see Fig. 2.5).
We find:

νδ = P

[
X[P] − P[P]

σ [P] > δ
1

ρ

]
= 1 − �

(
δ

1

ρ

)
(2.3.36)

It is easy to understand that, for any given δ, the probability νδ decreases as ρ

decreases, e.g., because the size of the pool increases.
If we assume, in particular, the normal approximation to the distribution of X[P],

we find

νδ = 1 − ψδ

2
(2.3.37)

(See Table 2.7 in Example 2.3.3 for a numerical illustration).

Table 2.7 The probability of “downside” payments

n νδ

δ = 0.10 δ = 0.05 δ = 0.01

100 0.46509 0.48253 0.49651

1 000 0.41132 0.45538 0.49106

10 000 0.19040 0.33062 0.46508
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Example 2.3.3 We refer to a portfolio, which consists of n independent risks, homo-
geneous with respect to both the sum insured and the claim probability p. We assume
p = 0.005. The normal approximation has been used for the numerical evaluations.
Table 2.6 illustrates the concentration, in terms of the probability (2.3.31), for some
values of δ and various pool sizes. On the other hand, Table 2.7 shows the probability
of “downside” payments. ❑

2.3.6 The Safety Loading

In this section we show how to calculate the safety loading consistently with the
portfolio riskiness. So, a practical feature of the risk index will clearly emerge.

Refer to the portfolio of n basic insurance covers, described in Sect. 2.3.3. Let
m(j) denote the (explicit) safety loading for risk j, and Π(j) the premium including
the safety loading, that is,

Π(j) = P(j) + m(j) (2.3.38)

where P(j) = x(j) p (see Eq. (2.3.3)).
Moving to the portfolio level, let Π [P] denote the total premium income

Π [P] =
n∑

j=1

Π(j) (2.3.39)

which can also be expressed as

Π [P] = P[P] + m[P] (2.3.40)

with obvious meaning of the symbol m[P].
The portfolio result, Z [P], is then defined as follows:

Z [P] = Π [P] − X[P] (2.3.41)

We obviously have:

E[Z [P]] = m[P] (2.3.42)

Var[Z [P]] = Var[X[P]] (2.3.43)

We consider the event Z [P] < 0, that is, the event X[P] > P[P]+m[P]. According to
the notation defined by (2.3.34), the probability of this event, namely the probability
of loss, is denoted as follows:
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Fig. 2.6 The probability
distribution of the random
payment X[P]

P[P]0

P[X[P] > P[P]+ m[P]

P[P]+ m[P]

Fig. 2.7 The probability
distribution of the random
result Z [P]

P[Z[P] < 0]

0 m[P]

π(m[P]) = P

[
X[P] > P[P] + m[P]] (2.3.44)

Clearly, the probability of loss should be kept reasonably low via an appropriate
choice of the (total) safety loading m[P].

Figures 2.6 and 2.7 show the probability distributions of the random payment X[P]
and the portfolio result Z [P], respectively (the probability distributions are assumed
to be continuous, so that the behavior of the density functions is displayed).

Note that, in the present setting of the problem, the safety loading m[P] is the
only parameter whose value can be chosen to lower the probability of a loss (i.e., a
negative value of Z [P]). Clearly, the effect of a change in this parameter (see Fig. 2.8)
is a shift in the probability distribution of Z [P] (see Fig. 2.9).

From (2.3.44), we have

π(m[P]) = P

[
X[P] − P[P]

σ [P] >
m[P]

σ [P]

]
= 1 − �

(
m[P]

σ [P]

)
(2.3.45)

where � denotes the cumulative distribution function of the random number X[P]−P[P]
σ [P] ,

with expected value equal to 0 and standard deviation equal to 1.
Let ε denote the accepted probability of loss. We want to find m[P] such that

π(m[P]) = ε (2.3.46)
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Fig. 2.8 The probability
distribution of X[P]:
probability of exceeding two
different levels of safety
loading
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Fig. 2.9 The probability
distribution of Z [P]: safety
loading as a shift parameter
of the random result
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that is

1 − �

(
m[P]

σ [P]

)
= ε (2.3.47)

and then

m[P] = σ [P] �−1(1 − ε) (2.3.48)

Finally, we find that the required safety loading per unit of expected value, namely
the safety loading rate, is given by

m[P]

P[P] = σ [P]

P[P] �−1(1 − ε) (2.3.49)

that is

m[P]

P[P] = ρ �−1(1 − ε) (2.3.50)

Thus, for a given accepted probability ε, the lower is the risk index ρ, the lower
is the safety loading rate.
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Example 2.3.4 Tables 2.8, 2.9 and 2.10 refer to the portfolio structures described by
Tables 2.3, 2.4 and 2.5, respectively. The normal approximation has been used to
evaluate the probabilities, namely it has been assumed:

X[P] − P[P]

σ [P] ∼ N (0, 1) (2.3.51)

The analysis of the results in the three tables leads, of course, to conclusions
strictly related to those presented in Example 2.3.2. Now, the effect of risk pooling
(compare Tables 2.8 and 2.9) and the effect of heterogeneity in the sums insured
(compare Tables 2.8 and 2.10) clearly appears in terms of the safety loading rate
m[P]

P[P] . Note, in particular, the huge values of this rate in Portfolio B when a very low

probability of loss is assumed as the target. So, the need for tools other than the safety
loading clearly emerges. ❑

Table 2.8 Safety loading-Portfolio A

m[P] m[P]

P[P]
m[P]

σ [P] π(m[P])

64 200 0.1284 2.880 0.002

57 550 0.1151 2.580 0.005

Table 2.9 Safety loading-Portfolio B

m[P] m[P]

P[P]
m[P]

σ [P] π(m[P])

20 312 0.4063 2.880 0.002

18 195 0.3639 2.580 0.005

6 420 0.1284 0.910 0.181

Table 2.10 Safety loading-Portfolio C

m[P] m[P]

P[P]
m[P]

σ [P] π(m[P])

122 300 0.2446 2.880 0.002

109 550 0.2191 2.580 0.005

64 200 0.1284 1.512 0.065
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2.3.7 Capital Allocation and Beyond

The outcome of the total payment X[P] can be higher than the amount of premiums,
even when these include an appropriate safety loading. In order to manage this
risk, the insurer can assign to the portfolio a fund which consists of shareholders’
capital (and, as such, may derive from previous profits, or from the issue of shares).
This action is usually referred to as the capital allocation. Hence, the purpose of
the allocation is to protect the insurance company against possible negative results
produced by the portfolio.

Let M denote the amount of capital allocated to the portfolio. Figure 2.10 illus-
trates the use of resources available to the insurer, in order to face the portfolio total
payment, and the results corresponding to the possible outcomes of the payment
itself.

In particular, the event X[P] > P[P] + m[P] + M means the portfolio default, or
ruin. We note that both the safety loading m[P] and the capital M are variables whose
values can be chosen to lower the probability of default, namely the probability:

π(m[P] + M) = P[X[P] > P[P] + m[P] + M] = P[Z [P] < −M] (2.3.52)

Remark We note that, while “profit” and “loss” are related to the amount Π [P] of premiums (and
hence to the safety loading m[P]), the default situation also involves the allocated capital M. Further,
the capital M (and the relevant cost) must be considered to define the “creation of value”, (from the
shareholders’ perspective) which will be addressed in Sect. 2.3.9.

n

j

( j)x
=1 

(Part of)  Premiums  P[P]

Profit Loss 

Total payment  
X[P]

Resources 
used

Result 

Premiums  P[P] +  (part of) safety loading  m[P] 

Premiums  Π [P]

+ (part of)  Capital  M

P[P] Π [P]

Π [P] + M

Default Creation of value 

Π [P] - rM

0

Fig. 2.10 Facing the total payment
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Fig. 2.11 The probability
distribution of the random
payment X[P]

P[P]
0

P[X[P] > P[P]+ m[P] + M]

P[P]+ m[P]+M

P[P]+ m[P]

Fig. 2.12 The probability
distribution of the random
result Z [P]

P[Z[P] < -M]

0 m[P]-M

If the total safety loading m[P] has been already stated, the following problem
should be considered: find the amount M such that:

π(m[P] + M) = α (2.3.53)

where α is an assigned low probability (see Figs. 2.11 and 2.12). Of course, we have:

M = −VaRα[X[P]] (2.3.54)

From (2.3.52) we have:

π(m[P] + M) = P

[
X[P] − P[P]

σ [P] >
m[P] + M

σ [P]

]
= 1 − �

(
m[P] + M

σ [P]

)
(2.3.55)

where � denotes the cumulative distribution function of the random number X[P]−P[P]
σ [P] ,

with expected value equal to 0 and standard deviation equal to 1. Thus, the target
expressed by (2.3.53) can also be written as follows:

1 − �

(
m[P] + M

σ [P]

)
= α (2.3.56)
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Fig. 2.13 The standardized
probability distribution of
the random payment
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and hence

m[P] + M

σ [P] = �−1(1 − α) (2.3.57)

(see Fig. 2.13).
We note that, setting M = 0, we trivially find formula (2.3.48), with α = ε.

Conversely, for a given probability α (and a given standard deviation σ [P], which
is univocally determined by the portfolio structure), Eq. (2.3.57) can be solved with
respect to the total amount m[P] + M. In other terms, if the safety loading is not yet
stated, both the amounts m[P] and M can be chosen in order to achieve the target
probability.

The unit-free index

s = m[P] + M

σ [P] (2.3.58)

is sometimes called the relative stability index. From (2.3.55), we see that the higher
is s, the lower is the ruin probability. To raise s, the following actions can be taken:

1. raise the safety loading m[P];
2. raise the allocated capital M;
3. reduce σ [P] via appropriate reinsurance arrangements (thus affecting the portfolio

structure, in terms of sums insured), and, in particular, by choosing the “retention”
level (we will deal with these concepts in Sects. 2.4 and 2.5).

As the insurer can choose (at least in principle) the safety loading, the amount
of allocated capital, and the retention level, these quantities are called decision vari-
ables. However, the following aspects should be stressed. Action 1 affects the premi-
ums, and hence is bounded by market constraints. Conversely, action 2 has constraints
at the company level because capital is a limited resource.

As regards action 3, whatever reinsurance arrangements may be chosen, the related
cost obviously affects the resources available to the portfolio, in particular reducing
the expected profit m[P]. As both numerator and denominator of the stability index
are affected (see (2.3.58)), the effect is not univocally determined in general.
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Table 2.11 Capital allocation and safety loading-Portfolio A

M m[P] m[P]

P[P]
M

Π [P] s π(m[P] + M)

10 000 50 000 0.100 0.018 2.6901 0.0036

15 000 50 000 0.100 0.027 2.9143 0.0018

20 000 50 000 0.100 0.036 3.1385 0.0009

Table 2.12 Capital allocation and safety loading-Portfolio B

M m[P] m[P]

P[P]
M

Π [P] s π(m[P] + M)

10 000 5 000 0.100 0.182 2.1268 0.0167

13 200 5 000 0.100 0.240 2.5805 0.0050

10 000 8 200 0.164 0.172 2.5805 0.0050

Table 2.13 Capital allocation and safety loading-Portfolio C

M m[P] m[P]

P[P]
M

Π [P] s π(m[P] + M)

10 000 50 000 0.100 0.018 1.4129 0.0788

60 000 50 000 0.100 0.109 2.5902 0.0048

35 000 75 000 0.150 0.061 2.5902 0.0048

Example 2.3.5 Tables 2.11, 2.12 and 2.13 refer to the portfolio structures described
by Tables 2.3, 2.4 and 2.5, respectively.

In particular, from Tables 2.12 and 2.13 the important role of the capital allocation
clearly appears, especially when very high safety loading rates should otherwise be
applied, because of either the size of the portfolio or its structure, in order to keep
low the probability of default. ❑

2.3.8 Solvency

As seen above, the event Z [P] < −M represents the portfolio default, or ruin. Con-
versely, when M +Z [P] ≥ 0 the insurer is able to meet the total payment by using the
premiums and, possibly, (part of) the allocated capital, that is, the insurer is solvent.
Hence, a solvency requirement can be expressed as follows:

P[M + Z [P] ≥ 0] = 1 − α (2.3.59)

where α is the accepted default probability (see Eq. (2.3.53)).
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Equation (2.3.59) can be solved with respect to M. The solution (see (2.3.57), for
given values of m[P] and σ [P]) provides the capital requirement for solvency purposes.

It is worth noting that, in the ordinary language, the term “solvency” is often used
in a not well-defined sense. Commonly, it is used to denote the capability of an agent
to pay the amounts when these fall due. It is apparent that this definition does not
fit obvious actuarial requirements. Indeed, in the insurance activity, the capability
cannot be meant in a deterministic sense (which leads to the concept of “absolute
solvency”): actually, the total amount due could be equal to the sum of all sums
insured with the policies in force at a given time, if all the insureds claim at that time.
Hence, the insurance business needs a definition of solvency in a probabilistic sense,
as witnessed in particular by Eq. (2.3.59).

2.3.9 Creating Value

We now return to the choice between action 1 (raise m[P]) and action 2 (raise M),
aiming to lower the probability of default (or to achieve an assigned target probability
α). First, we note that allocating capital implies a cost to the shareholders, whereas
raising the safety loading leads to a higher cost to the policyholders.

Let r denote the (annual) rate which quantifies the opportunity cost of the share-
holders’ capital. Thus, the cost of allocating the amount M is given by r M. However,
the common definition of a profit (or a loss) is only based on the comparison between
actual revenues and costs (see Sect. 1.3.2). Thus, for the portfolio we are addressing,
we have

Π [P] < X[P] ⇔ Z [P] < 0 ⇒ loss

Π [P] > X[P] ⇔ Z [P] > 0 ⇒ profit

(note that the only cost accounted for is given by the payment for claims, X[P], as,
in our simplified setting, expenses are disregarded). Conversely, if we want to assess
the portfolio result also allowing for the cost of capital allocation, the total amount
of premiums, Π [P], has to be compared to X[P] + rM. A new concept then arises,
namely the value creation.

Remark As mentioned in Sect. 1.3.2, various meanings can be attributed to the word “value” and
hence to the expression “value creation.” Here we are referring to value creation as the positive
difference between the revenues and the costs associated to all of the production factors, hence
including the cost of the capital invested in the business. In this sense, value creation is a synonym
to (positive) “economic earnings.” Thus, we are referring to value creation from the shareholders’
perspective.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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We then have, for our portfolio (see also Fig. 2.10):

Π [P] < X[P] ⇔ Z [P] < 0 ⇒ loss and value destruction
X[P] < Π [P] < X[P] + rM ⇔ 0 ≤ Z [P] < r M ⇒ profit and value destruction

Π [P] = X[P] + rM ⇔ Z [P] = r M ⇒ profit and no value
Π [P] > X[P] + rM ⇔ Z [P] > r M ⇒ profit and value creation

In order to compare strategies which consist in mixing action 1 and action 2, we
have to move to expected values. Thus, we have to replace X[P] with its expected
value E[X[P]] = P[P]. Noting that Π [P] = P[P] + m[P], we find, in terms of expected
values:

m[P] < rM ⇔ value destruction (2.3.60)

m[P] = rM ⇔ no value (2.3.61)

m[P] > rM ⇔ value creation (2.3.62)

Example 2.3.6 We refer to portfolio B and assume α = 0.005 as the target proba-
bility; hence, an amount M +m[P] = 18 200 is required (see Table 2.12). Further, we
assume r = 0.08. Table 2.14 illustrates some situations of value creation (Value > 0),
value destruction (Value < 0), and “equilibrium” (Value = 0), respectively. ❑

Whatever the target probability, the equation

m[P] = rM (2.3.63)

defines the borderline between value creation and value destruction. Conversely, for
a given target probability, we have

m[P] + M = const. (2.3.64)

(represented by a “level line”) as it results from Eq. (2.3.57). See Fig. 2.14; we note,
in particular, that the higher is r the smaller is the region of value creation.

It is worth stressing that both value creation and solvency are two important
goals for any insurance business (and, more in general, for any organization; see

Table 2.14 Value creation versus value destruction-Portfolio B

M m[P] rM Value

m[P] − rM

10 000 8 200 800 7 400

15 000 3 200 1 200 2 000

16 852 1 348 1 348 0

18 000 200 1 440 −1 240



2.3 Facing Portfolio Riskiness 107

Fig. 2.14 Capital allocation;
value creation versus value
destruction
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Table 2.15 Value creation and default probability-Portfolio B

M rM Value Default prob.

m[P] − rM π(m[P] + M)

10 000 800 1 700 0.063

15 700 1 256 1 244 0.005

20 000 1 600 900 0.001

35 000 2 800 −300 ≈0

Sect. 1.3.2). Clearly, for any given portfolio (and a given amount of safety loading),
the two targets require opposite actions: a higher amount of capital improves the
solvency level, while reducing the value creation.

Example 2.3.7 We still refer to portfolio B, and assume 5 % as the safety loading
rate, so that m[P] = 2 500. The opportunity cost of capital is r = 0.08. Table 2.15
illustrates value creation and default probability as functions of the capital allocation.
❑

2.3.10 Risk Management and Risk Analysis: Some Remarks

Various issues dealt with in the previous sections of this chapter can be properly
placed in the framework of insurance risk management, and in particular can be
interpreted as risk management actions.

Pricing the insurance product, which in our setting simply reduces to calculate an
appropriate safety loading, aims at loss prevention and loss reduction (see Sect. 1.3.5).
In a more general setting, also product design (and, in particular, the design of various
policy conditions) contributes to loss prevention and loss reduction.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Capital allocation is the action aiming at loss financing via retention (see
Sect. 1.3.5). More precisely, the shareholders’ capital allocated to a portfolio consti-
tutes the tool for funding possible future losses.

Like other business entities, insurers can finance potential losses via risk transfer.
In the following sections, we will first focus on traditional risk transfers, namely
via reinsurance arrangements (Sects. 2.4 and 2.5). Then, alternative risk transfers
(Sect. 2.6), and in particular the transfer to capital markets, will be analyzed in the
framework of loss financing actions.

Enterprise Risk Management (ERM), as a methodological framework, has pro-
vided important contributions to risk analysis and risk assessment. Nevertheless, it
should be stressed that the earliest contribution to risk quantification can be traced
back to the eighteenth century. In 1786 Johannes Tetens first addressed the analy-
sis of the process risk inherent in a life insurance portfolio. Tetens showed that the
risk in absolute terms increases as the portfolio size n increases, whereas the risk
in respect of each insured decreases in proportion to

√
n. This feature of the risk

pooling process has been described in Sect. 1.6.1 (in particular, see Examples 1.6.1
and 1.6.2), and Sect. 2.3.4 (see Example 2.3.2).

In a modern theoretical perspective, Tetens’ ideas constitute a pioneering con-
tribution to the individual risk theory. Note that the term “individual” recalls the
nature of the approach, which starts from the description of the individual risks X(j)

(in Case 2, the amount x(j) of the potential loss, and the relevant probability p(j)),
and leads to the construction of the probability distribution (or, at least, some typical
values) of the total payment X[P]. According to the terminology commonly used in
the ERM context, the adoption of this method is called the bottom-up approach.

The collective risk theory, whose origin can be traced back to the seminal con-
tribution by Filip Lundberg, dated 1909, directly focuses on the characteristics of
the total payment X[P]. In the ERM context, this approach is usually called the top-
down approach. Well-known implementations lead, for instance, to the calculation
of the VaR and the TailVaR (see Sect. 1.5.4), and to various solvency requirements
according to a dynamic perspective (as we will see in Sect. 2.7).

2.3.11 The “Uncertainty Risk”

We refer, as in Sects. 2.3.3 and 2.3.4, to a portfolio of n basic insurance covers, all
with the same probability of claim. Further, we assume that all the policies have the
same sum insured x. We denote simply with X the random payment for the generic
policy.

Unlike the previous sections, we now suppose that p does not necessarily represent
the “correct” estimate of the claim probability. If p is not a correct estimate of
this probability, situations like the one displayed in Fig. 2.3b, and thus involving
systematic deviations, can occur.

To make explicit our awareness, we can express uncertainty about the estimate of
the claim probability through a random quantity p̃, to which a probability distribution

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 2.15 The pdf of a Beta
distribution

0 1 p

should be assigned. We now denote with p the generic outcome of the random quantity
p̃.

As regards the probability distribution of p̃, we can, for example, choose a Beta
distribution (see Fig. 2.15), the parameters of which are usually denoted with α, β.
Thus,

p̃ ∼ Beta(α, β) (2.3.65)

Hence, for the random quantity p̃, we have:

E[p̃] = α

α + β
(2.3.66)

Var[p̃] = α β

(α + β)2 (α + β + 1)
(2.3.67)

When uncertainty about the claim probability is accounted for, the expected value
of X, conditional on any value p of p̃ is given by

E[X|p] = x p (2.3.68)

Conversely, the quantity
E[X|p̃] = xp̃ (2.3.69)

is a random amount, as it is a function of p̃. Its expectation, according to the Beta
distribution assigned to p̃, is given by

EBeta
[
E[X|p̃]] = EBeta[xp̃] = x

α

α + β
(2.3.70)

Note that, in the uncertainty framework, formula (2.3.70) expresses the unconditional
expected value, namely E[X]. For the variance of the random amount E[X|p̃] we find

VarBeta
[
E[X|p̃]] = VarBeta[xp̃] = x2 α β

(α + β)2 (α + β + 1)
(2.3.71)
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In the presence of uncertainty, the variance of X, conditional on any value p of p̃,
is given by

Var[X|p] = x2 p (1 − p) (2.3.72)

while

Var[X|p̃] = x2 p̃ (1 − p̃) (2.3.73)

is a random quantity. Its expectation, according to the Beta distribution assigned to
p̃, is given by

EBeta
[
Var[X|p̃]] = x2

EBeta[p̃ (1 − p̃)] (2.3.74)

It can be proved that EBeta[p̃ (1 − p̃)] = α β
(α+β)(α+β+1)

, so that

EBeta
[
Var[X|p̃]] = x2 α β

(α + β)(α + β + 1)
(2.3.75)

Moving to the portfolio level, we now address the total payment X[P]. When
uncertainty in the claim probability is allowed for, the expected value E[X[P]|p] and
the variance Var[X[P]|p] must be meant as conditional on the generic value p of the
random quantity p̃, as for the corresponding typical values of X. Further, we have:

E[X[P]|p̃] = nE[X|p̃] (2.3.76)

and for the variance

Var[X[P]|p̃] = nVar[X|p̃] (2.3.77)

Expected value and variance, as given by (2.3.76) and (2.3.77) respectively, are
random quantities. We have:

E[X[P]] = EBeta
[
nE[X|p̃]] = n x

α

α + β
(2.3.78)

Note that (2.3.78) expresses the unconditional expected value of X[P].
As regards the variance of X[P], first it should be stressed that the independence

among the individual random claims must be meant only conditional on any given
value of the probability p. Then, in the presence of uncertainty about this probability,
namely when the random quantity p̃ is addressed, the unconditional variance of X[P]
cannot be expressed as the sum of the individual unconditional variances. Conversely,
it can be proved that the unconditional variance of X[P] can be expressed as follows:
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Var[X[P]] = VarBeta
[
E[X[P]|p̃]]+ EBeta

[
Var[X[P]|p̃]]

= VarBeta
[
nE[X|p̃]]+ EBeta

[
nVar[X|p̃]] (2.3.79)

Hence, from (2.3.71) and (2.3.75) we have:

Var[X[P]] = n2 x2 α β

(α + β)2 (α + β + 1)
+ n x2 α β

(α + β)(α + β + 1)
(2.3.80)

Finally, for the (unconditional) coefficient of variation, namely the risk index,
after some manipulations we find

CV[X[P]] =
√
Var[X[P]]
E[X[P]] =

√
β

α (α + β + 1)
+ 1

n

β (α + β)

α (α + β + 1)
(2.3.81)

Hence, we have

lim
n→∞CV[X[P]] =

√
β

α (α + β + 1)
> 0 (2.3.82)

Note that, on the contrary, when no uncertainty is allowed for, the risk index tends
to 0 when the pool size n diverges (see (1.6.14)). In more practical terms, this means
that:

• the process risk (namely, the risk of random fluctuations) is a diversifiable risk,
and the diversification is achieved by increasing the portfolio size, and is referred
to as diversification via pooling;

• the uncertainty risk (namely, the risk of systematic deviations) is an undiversifiable
risk, as its (relative) magnitude is independent of the portfolio size.

(see also Sects. 2.3.1 and 2.3.2).

Example 2.3.8 We assume, for the random quantity p̃, the Beta distribution with the
following parameters:

α = 4; β = 796 (2.3.83)

Hence, from (2.3.66) and (2.3.67), we find:

E[p̃] = 0.005

Var[p̃] = 7.754 × 10−9

Let us now assume the following parameters

α = 2; β = 398 (2.3.84)

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Table 2.16 The coefficient of variation CV[X[P]]
n p = 0.005 α = 4, β = 796 α = 2, β = 398

10 4.461 4.486 4.511

100 1.411 1.495 1.575

1 000 0.446 0.669 0.834

10 000 0.141 0.518 0.718

. . . . . . . . . . . .

∞ 0.000 0.498 0.704

In this case, we have:

E[p̃] = 0.005

Var[p̃] = 3.094 × 10−8

Note that, while keeping the same expected value, we now have a higher variance,
which clearly expresses a higher degree of uncertainty about the claim probability.

Table 2.16 shows the risk index, namely CV[X[P]], for various portfolio sizes n;
the cases of no uncertainty (i.e., a fixed value of p) and uncertainty expressed by the
parameters specified by (2.3.83) and (2.3.84) respectively are considered. The results
are self-evident: the undiversifiable part of the risk clearly appears when uncertainty
is explicitly introduced into the valuations. ❑

2.4 Reinsurance: The Basics

2.4.1 General Aspects

The reinsurance is the traditional risk transfer from an insurer (the cedant) to another
insurer (the reinsurer). From a technical point of view, the main aim of the reinsurance
transfer is to find protection against the portfolio ruin (and the insurer’s ruin, as well).
Further aims of reinsurance will be addressed in Sect. 2.5.4.

The basic idea underlying any reinsurance form (or arrangement) is to split the
portfolio random payment, X[P], as follows:

X[P] = X[ret] + X[ced] (2.4.1)

where:

• the random amount X[ced] is the ceded part of the total payment; this amount will
be paid by the reinsurer to the cedant;



2.4 Reinsurance: The Basics 113

• the random amount X[ret] is the retained part of the total payment, hence it is the
net payment of the cedant.

A reinsurance premium is paid by the cedant to the reinsurer, as the price of the
possible reinsurer’s intervention.

How to define the two terms on the right-hand side of (2.4.1)? The two following
approaches can be adopted.

1. In principle, the simplest way to define the splitting consists of assigning a reten-
tion function �, which works at the portfolio level, so that

X[ret] = �(X[P]) (2.4.2)

In some cases, the retained payment can also depend on other quantities, e.g., the
total number of claims, K , in the portfolio, thus

X[ret] = �(X[P], K) (2.4.3)

Anyway, this approach relies on the definition of the splitting on a portfolio basis,
and then leads to a global reinsurance arrangement.

2. As the random payment is the sum of the payments related to the various risks,
namely X[P] = ∑n

j=1 X(j), we can split each X(j) by defining a retention function
γ, so that

X(j)[ret] = γ(X(j)) (2.4.4)

Then, the retained total payment is given by

X[ret] =
n∑

j=1

X(j)[ret] (2.4.5)

In some cases, a set of retention functions γ(j), j = 1, 2, . . . , n, must be defined,
instead of a single function γ. Anyhow, this approach requires the splitting on a
policy basis, hence leading to an individual reinsurance arrangement.

We now describe an implementation of approach 1. Another implementation of
this approach will be presented in Sect. 2.5.3.

2.4.2 Stop-Loss Reinsurance

Stop-loss reinsurance provides a “direct” protection against the portfolio default,
or ruin, as it directly refers to the portfolio total payment. The reinsurer gets the
reinsurance premium Π [reins] and pays the part of X[P] which exceeds a stated amount,
Λ, the stop-loss retention, or priority. The priority is commonly expressed in terms
of the total premium income Π [P] (and usually Λ > Π [P]).
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Fig. 2.16 The reinsurer’s payment

The cedant’s retention and the reinsurer’s payment are then given by:

X[ret] =
{

X[P] if X[P] ≤ Λ

Λ if X[P] > Λ
(2.4.6a)

X[ced] =
{

0 if X[P] ≤ Λ

X[P] − Λ if X[P] > Λ
(2.4.6b)

Figure 2.16a shows the reinsurer’s intervention.
An upper limit, Θ , to reinsurer’s intervention can be stated. In this case, the

cedant’s retention and the reinsurer’s payment are respectively given by:

X[ret] =

⎧⎪⎨
⎪⎩

X[P] if X[P] ≤ Λ

Λ if Λ < X[P] < Λ + Θ

X[P] − Θ if X[P] ≥ Λ + Θ

(2.4.7a)

X[ced] =

⎧⎪⎨
⎪⎩

0 if X[P] ≤ Λ

X[P] − Λ if Λ < X[P] < Λ + Θ

Θ if X[P] ≥ Λ + Θ

(2.4.7b)

Figure 2.16b shows the reinsurer’s intervention.
Note that Eqs. (2.4.6) and (2.4.7) constitute two implementations of the general

scheme expressed by Eqs. (2.4.1) and (2.4.2).
When dealing with reinsurance arrangements, the portfolio loss, L, rather than

the portfolio result Z [P], is often referred to. The loss of the cedant is given, in the
absence of reinsurance, by:

L = X[P] − Π [P] (2.4.8)

Clearly, L = −Z [P].
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Fig. 2.17 The cedant’s loss
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If a stop-loss reinsurance works (without an upper limit, and hence with X[ced]
defined by Eq. (2.4.6b)), the loss, L[SL], is given by:

L[SL] = X[P] − Π [P] + Π [reins] − X[ced] =
{

L + Π [reins] if X[P] ≤ Λ

Λ − Π [P] + Π [reins] if X[P] > Λ

(2.4.9)

(see Fig. 2.17). Note that, in the presence of reinsurance, the portfolio outgo also
includes the reinsurance premium, and thus is given by X[P] + Π [reins], whereas the
income is given by Π [P] + X[ced].

As the stop-loss reinsurance directly refers to the portfolio loss, it represents
in theory the best solution to portfolio protection. However, in practice, it should
be noted that this reinsurance form implies a potentially dangerous exposure of
the reinsurer, related to the tail of the probability distribution of X[P] (especially
if no upper limit is stated). This means that a very high safety loading should be
included into the premium Π [reins], possibly making this reinsurance cover extremely
expensive. Hence, it is mainly used as an ingredient in a reinsurance programme (see
Sect. 2.5.6), after other reinsurance covers have been implemented to protect the
portfolio.

2.4.3 From Portfolios to Contracts

We now move to individual reinsurance arrangements, whose parameters are thus
defined at a contract level (rather than a portfolio level), still referring to the “basic”
insurance cover.

A reinsurance policy at a contract level is defined as

a = (a(1), a(2), . . . , a(n)) (2.4.10)
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where a(j) (0 < a(j) ≤ 1) is the share retained of the jth contract, i.e., the retained
proportion.

For any given reinsurance policy a, relation (2.4.4) becomes:

X(j)[ret] = a(j) X(j) =
{

a(j) x(j) in the case of claim

0 otherwise
(2.4.11)

and hence we have:

E[X(j)[ret]] = a(j)
E[X(j)] = a(j) P(j) (2.4.12)

Var[X(j)[ret]] = (a(j))2
Var[X(j)] ≤ Var[X(j)] (2.4.13)

where P(j) denotes the equivalence premium (relying on a realistic basis).
Shares of premiums and, hence, safety loadings (namely, expected profits) are

ceded to the reinsurer. For j = 1, 2, . . . , n, let Π(j)[ret] and m(j)[ret] denote the retained
share of premium (including the safety loading) and safety loading respectively.
Clearly,

m(j)[ret] = Π(j)[ret] − a(j) P(j) (2.4.14)

In particular, if

Π(j)[ret] = a(j) Π(j) (2.4.15)

it follows that

m(j)[ret] = a(j) Π(j) − a(j) P(j) = a(j) m(j) (2.4.16)

However, the ceded share can be different from (1 − a(j))m(j), and, in particular:

• it can be lower, if

– the reinsurer grants a reward to the cedant for the underwriting work (namely,
a reinsurance commission);

– the reinsurer accepts a lower safety loading thanks to a larger portfolio size;

• it can be either lower or higher because the reinsurer adopts a technical basis
different from the one adopted by the ceding company, and hence a different
premium.

Example 2.4.1 Assume that, for the policy 1 in the portfolio, the sum insured is
x(1) = 1 000, and the probability of claim (assessed by the cedant) is p(1) = 0.01;
the safety loading is 10 % of the equivalence premium P(1) = 10, and thus m(1) = 1.
Hence, Π(1) = 11. Let a(1) = 0.70 be the retained share of the risk.

First, assume that the reinsurer agrees on the technical basis, i.e., on p(1) = 0.01,
and 10 % as the safety loading, and is willing to obtain a proportional share of
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the safety loading. Thus, for the ceding company we have m(1)[ret] = 0.7, so that
Π(1)[ret] = 7.7, thus resulting proportional to Π(1) according to the retention share.

Second, suppose that the reinsurer still agrees on the technical basis, but is willing
to leave to the cedant a share of the safety loading higher than 70 %, say 80 %. Hence,
we find

Π(1)[ret] = 0.70 P(1) + 0.80 m(1) = 7.8

Finally, assume that the reinsurer does not agree on the technical basis. In particu-
lar, the reinsurer accepts a safety loading equal to 10 % of the equivalence premium,
whilst evaluates the claim probability as p̃(1) = 0.012. Thus, according to the rein-
surer’s judgement, the equivalence premium should be P̃(1) = 12, and the premium
including the safety loading should be Π̃(1) = 13.2. If the reinsurer is willing to
obtain a proportional share of Π̃(1), namely 0.30 × 13.2 = 3.96, the cedant retains

Π(1)[ret] = Π(1) − 0.30 Π̃(1) = 11 − 3.96 = 7.04

and thus

m(1)[ret] = Π(1)[ret] − 0.70 P(1) = 7.04 − 7 = 0.04

❑

To assess the effect of reinsurance on the portfolio riskiness, we have to look at
the retained total payment, X[ret], and some related typical values, in particular the
index defined by (2.3.58).

The retained total payment is defined by (2.4.5). Then, we have

E[X[ret]] = E

⎡
⎣ n∑

j=1

X(j)[ret]
⎤
⎦ =

n∑
j=1

a(j) P(j) (2.4.17)

and (assuming the independence among the insured risks)

Var[X[ret]] =
n∑

j=1

Var[X(j)[ret]] =
n∑

j=1

(a(j))2
Var[X(j)] (2.4.18)

Let σ [ret] denote the standard deviation of the total payment, that is,

σ [ret] =
√
Var[X[ret]] (2.4.19)

Further, let m[ret] denote the retained safety loading (and hence the retained expected
profit):
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m[ret] =
n∑

j=1

m(j)[ret] (2.4.20)

Then, we have:

s[ret] = m[ret] + M

σ [ret] (2.4.21)

From (2.4.21) we can see that, in the presence of a reinsurance arrangement, the
probability of default depends on:

• the effect of reinsurance on the variability of the total payout, expressed by σ [ret];
• the retained share of the total expected profit, expressed by m[ret].

Note that, in particular, we have:

m[ret] < m[P] and σ [ret] < σ [P] (2.4.22)

The probability of default, π(m[ret] + M), is then given by:

π(m[ret] + M) = P[X[ret] > P[ret] + m[ret] + M] = 1 − �

(
m[ret] + M

σ [ret]

)
= 1 − �(s[ret])

(2.4.23)
(see Eq. (2.3.55))

To quantify the probability of default, and then to determine an appropriate capital
allocation, we need to refer to specific reinsurance policies a = (a(1), a(2), . . . , a(n)),
and to the rules adopted for splitting the safety loading (see Example 2.4.1 in partic-
ular).

2.4.4 Two Reinsurance Arrangements

The quota-share reinsurance is defined by the following policy:

a = (a, a, . . . , a); 0 < a < 1 (2.4.24)

namely, the same retention share is applied to all the individual risks. The effect on
the sums insured is illustrated by Fig. 2.18 which shows that, in relative terms, all
the sums insured are reduced in the same proportion.

For the standard deviation of the portfolio payment, we immediately find:

σ [ret] = aσ [P] (2.4.25)

whereas the retained profit is given by
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Fig. 2.18 Quota-share
reinsurance
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Fig. 2.19 Surplus
reinsurance
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m[ret] = am[P] (2.4.26)

if the reinsurer and the cedant agree on a proportional sharing.
A surplus reinsurance arrangement is defined by the retention, x[ret], in terms of

the sum insured. The amount x[ret] is commonly called the retention line. For the
generic risk, whose sum insured is x(j), the splitting (see (2.4.4)) is determined as
follows:

• the amount min{x(j), x[ret]} is retained;
• the amount max{0, x(j) − x[ret]}, i.e., the surplus, is ceded.

Hence, the reinsurance policy a is defined as follows:

a(j) = min{x(j), x[ret]}
x(j)

= min

{
1,

x[ret]

x(j)

}
; j = 1, 2, . . . , n (2.4.27)

Figure 2.19 illustrates the effect of the surplus reinsurance, namely the “leveling” of
sums insured.
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Intuitively, a higher efficiency is expected from surplus reinsurance, thanks to the
leveling effect. It is worth recalling (see Sect. 2.3.4, and formula (2.3.17) in particular)
that, as a consequence of a huge sum insured, the diversification via pooling tends
to disappear. Clearly, the surplus reinsurance can mitigate this dangerous effect by
leveling (at least to some extent) the sums insured. On the contrary, according to the
quota-share arrangement there is no leveling, as all the sums insured are reduced in
the same proportion.

Remark We note that, comparing the effects of quota-share and surplus reinsurance is, to some
extent, similar to comparing the effects of fixed-percentage deductible and fixed-amount deductible,
discussed in Sect. 1.3.6.

2.4.5 Examples

We address the following aspects of reinsurance policies by using numerical exam-
ples:

• first, we discuss the effects of quota-share and surplus reinsurance, in terms of the
retained expected profit, the standard deviation of the portfolio payment, and the
resulting probability of default π(m[ret] + M) (as given by formula (2.4.23)); see
Example 2.4.2;

• then, we compare various combinations of surplus reinsurance and capital allo-
cation, in terms of the retained expected profit and the standard deviation of the
portfolio payment, for a fixed level of probability of default; see Example 2.4.3.

Example 2.4.2 We refer to portfolio C, described in Example 2.3.2 (see Table 2.5).
We assume what follows:

• safety loading rate m[P]
P[P] = 0.10;

• allocated capital M = 10 000;
• retained share of premiums (and hence expected profit) equal to retained share of

sums insured.

See Tables 2.17 and 2.18.
Some comments can help in understanding the higher effectiveness of the surplus

reinsurance compared to the quota-share arrangement.
The same amount of retained expected profit, namely m[ret] = 45 000, is achieved

with a = 0.90 and x[ret] = 6 000; however, in the quota-share reinsurance the
standard deviation is higher (σ [ret] = 38 220 versus σ [ret] = 33 271), and hence the
probability of default is higher (π(m[ret]+M) = 0.075 versus π(m[ret]+M) = 0.049).
A similar situation holds for a = 0.75 and x[ret] = 3 000.

Finally, we note that the same probability of default, π(m[ret] + M) = 0.004,
is achieved in the quota-share with a = 0.157, and the surplus reinsurance with
x[ret] = 1 500; however, the latter arrangement leaves a much higher expected profit
(m[ret] = 33 750 versus m[ret] = 7 865). ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Table 2.17 Quota-share reinsurance-Portfolio C

a m[ret] σ [ret] s[ret] π(m[ret] + M)

1.000 50 000 42 467 1.413 0.079

0.900 45 000 38 220 1.439 0.075

0.750 37 500 31 850 1.491 0.068

0.157 7 865 6 680 2.674 0.004

Table 2.18 Surplus reinsurance-Portfolio C

x[ret] m[ret] σ [ret] s[ret] π(m[ret] + M)

≥8 000 50 000 42 467 1.413 0.079

6 000 45 000 33 271 1.653 0.049

5 000 42 500 28 867 1.819 0.034

3 000 37 500 20 864 2.277 0.011

1 500 33 750 16 353 2.675 0.004

Example 2.4.3 We refer to portfolio B, described in Example 2.3.2 (see Table 2.4),
which consists of 10 000 risks, all with x = 1 000 as the sum insured and p = 0.005
as the claim probability. We focus on some combinations of retention line x[ret] and
allocated capital M, leading to the same probability of default π(m[ret]+M) = 0.005,
and hence to the same value s[ret] = 2.5805. Thus,

m[ret] + M

σ [ret] = 2.5805

We assume that the safety loading rate m[P]
P[P] = 0.10 is adopted, which leads to

m[P] = 5 000 (see Table 2.12). Then, we find:

m[ret] = m[P] min{x[ret], 1 000}
1 000

= 5 min{x[ret], 1 000}

Further, we have:

σ [ret] =
√

10 000 (min{x[ret], 1 000})2 p (1 − p)

= 100 min{x[ret], 1 000}√p (1 − p) = 7.053 min{x[ret], 1 000}

so that we find:
M = 13.2 min{x[ret], 1 000}

This formula can be generalized (although referring still to the particular portfolio
structure, with x as the sum insured for all the risks) as follows:

M = κ min{x[ret], x} (2.4.28)
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Table 2.19 Capital allocation versus surplus reinsurance-Portfolio B

M x[ret] m[ret] σ [ret] Value

m[ret] − rM

13 200 ≥1 000 5 000 7 053 3 944

6 600 500 2 500 3 527 1 972

2 640 200 1 000 1 411 789

1 320 100 500 705 394

where the coefficient κ depends, in particular, on the target probability of default.
Figure 2.20 illustrates the relation (2.4.28), for various target probabilities; x denotes
the sum insured (in the numerical example x = 1 000).

Table 2.19 illustrates the effects of some choices of retention line and capital
allocation (all the combinations leading to the same result in terms of the probability
of default, that is, 0.005). We note that, the lower the retention line x[ret] (i.e., the
higher the cession to the reinsurer), the lower is the need for both the capital allocation
M and the safety loading m[ret], but, at the same time, the smaller is the value creation
(r = 0.08 has been assumed). ❑

2.4.6 Optimal Reinsurance Policy

We consider the following problem: find the reinsurance policy

a = (a(1), a(2), . . . , a(n))

which implies the lowest probability of default, out of the set of reinsurance policies
leading to the same amount of retained expected profit m[ret]. It is worth noting that
the results reported below hold in general situations, namely are not restricted to the
“basic” insurance cover we have so far addressed.

The problem we are attacking is a problem of constrained optimization. In formal
terms, let m̂(j) denote the safety loading of the jth risk ceded in the case of zero
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retention (that is, if a(j) = 0). As seen in Sect. 2.4.3, we can have m̂(j) � m(j). Assume
that, for any value of a(j) (0 ≤ a(j) ≤ 1), the ceded safety loading is (1 − a(j)) m̂(j).
Then, we have

m(j)[ret] = m(j) − (1 − a(j)) m̂(j) (2.4.29)

and, for the total retained safety loading:

m[ret] = m[P] −
n∑

j=1

(1 − a(j)) m̂(j) (2.4.30)

Consider the index s[ret], defined by (2.4.21), and the probability of default, given
by (2.4.23). Note that, under the constraint

m[ret] + M = constant (2.4.31)

we have

min
a

{σ [ret]} ⇒ max
a

{s[ret]} ⇒ min
a

{π(m[ret] + M)} (2.4.32)

where

σ [ret] =
√√√√ n∑

j=1

(a(j))2 (σ (j))2 (2.4.33)

with (σ (j))2 = Var[X(j)]
Hence, the optimization problem is as follows:

min
a

n∑
j=1

(a(j))2 (σ (j))2 (2.4.34)

subject to:⎧⎪⎨
⎪⎩

n∑
j=1

(1 − a(j)) m̂(j) = A

0 ≤ a(j) ≤ 1; j = 1, 2, . . . , n

We note that the optimization problem is parametric, as its solution depends on the
parameter A.
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It is possible to prove that the optimal solution is given by:

a(j) = min

{
1, B

m̂(j)

(σ (j))2

}
(2.4.35)

where the parameter B depends, in particular, on the value assigned to A, and hence
on the amount of ceded expected profit: the lower is the ceded expected profit, the
higher is B and then the retention.

We now return to the “basic” insurance cover, and assume the same claim proba-
bility p for all the n risks. Hence, for j = 1, 2, . . . , n, we have

(σ (j))2 = (x(j))2 p (1 − p) (2.4.36)

Moreover, we assume that, for j = 1, 2, . . . , n, the quantity m̂(j) is proportional
to the sum insured x(j):

m̂(j) = α x(j) (2.4.37)

Note that relation (2.4.37) holds, in particular, if:

1. m(j) = βP(j) = βp x(j),
and

2. m̂(j) = m(j).

From (2.4.35) it follows that

a(j) = min

{
1, B

α

x(j) p (1 − p)

}
(2.4.38)

and, in monetary terms:

a(j) x(j) = min

{
x(j), B

α

p (1 − p)

}
(2.4.39)

The amount B α
p (1−p)

is independent of j, so that we can write:

a(j) x(j) = min
{

x(j), x[ret]} (2.4.40)

Hence, the solution of the constrained optimization problem (2.4.34) is given by the
surplus reinsurance.

It is worth noting that, conversely, if a surplus reinsurance arrangement is adopted,
the probability of default is minimized, subject to the loss of expected profit related
to the value of A implied by the retention level x[ret].
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2.5 Reinsurance: Further Aspects

2.5.1 Reinsurance Arrangements

Reinsurance arrangements can be classified according to several criteria. In particular,
the classification into global reinsurance arrangements (that is, on a portfolio basis)
and individual arrangements (on a policy basis) has been mentioned in Sect. 2.4 (see
also Fig. 2.21).

When a reinsurance arrangement is defined on a policy basis, the relevant para-
meters concern the individual risks (for example, the share a in the quota-share
reinsurance, the retention line x[ret] in the surplus reinsurance). Another reinsurance
arrangement belonging to this category, the so-called Excess-of-Loss reinsurance,
will be described in Sect. 2.5.2.

The parameters of reinsurance arrangements defined on a portfolio basis relate
to quantities concerning the portfolio total payment (for example, the priority Λ and
the upper limit Θ in the stop-loss reinsurance). Another reinsurance arrangement
belonging to this category, the so-called catastrophe reinsurance, will be described
in Sect. 2.5.3.

According to another criterion, reinsurance arrangements can be classified into
proportional and non-proportional arrangements (see Fig. 2.21).

In a proportional reinsurance arrangement, claims and premiums are divided
between the cedant and the reinsurer in the ratio of their shares in the reinsurance
contract. Hence, the sharing of claims is determined when the reinsurance arrange-
ment is defined. Quota-share and surplus reinsurance belong to this category.

In a non-proportional reinsurance arrangement, the rule for the sharing of claims
is stated when the reinsurance contract is defined, but the actual sharing of claims
is determined depending on the severity of each claim, or the number of claims in
the portfolio, or the total portfolio payment. Examples are given by the stop-loss,
catastrophe, and XL reinsurance.

Fig. 2.21 Reinsurance
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2.5.2 Random Claim Sizes: XL Reinsurance

Other features of the reinsurance arrangements we have already dealt with, namely
quota-share and surplus reinsurance, emerge when moving to individual risks more
general than those related to the basic insurance cover, in particular by allowing for
random claim sizes. For example, we can refer to the risks described as Cases 3d (A
fire in a factory) and 3e (Car driver’s liability) in Sect. 1.2.4. Further, the specific role
of the Excess-of-Loss reinsurance emerges if we allow for random claim sizes.

Let us refer to the jth risk in the portfolio. An example of the (continuous) prob-
ability distribution of the generic kth claim, X(j)

k , is provided, in terms of the related

density function, by Fig. 2.22; x(j)
max represents the maximum possible outcome.

In a quota-share arrangement, with retention share a for all the risks in the port-
folio, the retained amount is defined as follows:

X(j)[ret]
k = a X(j)

k (2.5.1)

In a surplus reinsurance arrangement, with x[ret] as the retention line, we have
(assuming x[ret] < x(j)

max):

X(j)[ret]
k = x[ret]

x(j)
max

X(j)
k (2.5.2)

We note that, while in a quota-share arrangement the retained share is trivially
equal to a for all the risks in the portfolio, according to the surplus reinsurance the

retained share is x[ret]
x(j)

max
, and hence depends on x(j)

max which is specific to each insured

risk. Figures 2.23 and 2.24 show the retention (and the reinsurer’s intervention), in
a surplus arrangement, depending on the relation between the amount x(j)

max and a
given retention line x[ret]. Both the arrangements can be classified as proportional

reinsurance, because, whatever the amount X(j)
k , the retained share (either a or x[ret]

x(j)
max

)

is known at the time the reinsurance contract is written.
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Fig. 2.23 The retained
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The retention and the reinsurer’s intervention in the Excess-of-Loss reinsurance
(briefly, XL reinsurance) are defined as follows:

X(j)[ret]
k = min{X(j)

k ,Λ} (2.5.3a)

X(j)[ced]
k = max{X(j)

k − Λ, 0} (2.5.3b)

where Λ denotes the deductible. The analogy with the deductible in a generic risk
transfer is apparent (see Sect. 1.3.6, and Eqs. (1.3.4)).

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 2.25 The retained
payment of the cedant in XL
reinsurance (no upper limit)
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We note that, in this simple XL arrangement, the reinsurer pays the whole amount
beyond the deductible, net of the deductible itself, namely no upper limit has been
stated. The retained share decreases as the claim size X(j)

k increases; see Fig. 2.25.
Indeed, from (2.5.3a) we have:

X(j)[ret]
k

X(j)
k

= min

{
1,

Λ

X(j)
k

}
(2.5.4)

As the retained share depends on the amount X(j)
k and hence is not known at the time

of issue of the reinsurance contract, the result is a non-proportional reinsurance.
Assume, conversely, that the upper limit of the reinsurance cover is set to h Λ (with

h an integer number, h ≥ 2). For a generic claim with random size X(j)
k , possible

situations are as follows:

1. if X(j)
k ≤ Λ, then the insurer totally retains the claim amount;

2. if Λ < X(j)
k ≤ h Λ, then the XL cover exhausts the cession;

3. if X(j)
k > h Λ, then the insurer has still to cede X(j)

k − h Λ, through a second XL
cover (or possibly more XL covers), with another reinsurer (or even with the first
reinsurer, however, according to a technical basis usually different from the one
used in the first cover).

Hence, the cession is split into two (or more) layers: the first layer covers the interval
(Λ, h Λ), whereas the interval (h Λ, X(j)

k ) can be covered by a further XL reinsurance
(or more than one XL). See Fig. 2.26, where it has been assumed h = 3.
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Fig. 2.26 Layering in XL reinsurance

2.5.3 Catastrophe Reinsurance

The Catastrophe reinsurance (briefly, Cat-XL) is a non-proportional reinsurance
arrangement at a portfolio level. Its aim is to protect the portfolio (and the insurance
company) against the risk that a single accident (that is, a “catastrophe”) causes a
huge number of claims in the portfolio itself. For example,

• in a generic portfolio, a high number of claims can occur because of a disaster
(hurricane, earthquake, and so on);

• in “a group insurance,” a number of insureds can suffer body injuries owing to
a single accident in the workplace (explosion, fire, collapse, and so on); see, for
example, Cases 3b (Disability benefits; one-year period) and 3c (Disability bene-
fits; multi-year period) in Sect. 1.7.2.

A catastrophe is usually defined in terms of a given (minimum) number of claims,
c, within a time interval of a given (maximum) duration, for example, 48 h. In formal
terms, let K denote the random number of claims, X[P] the consequent total payment
(before reinsurer’s intervention); the reinsurer will intervene only if K ≥ c.

There are various definitions of the Cat XL structure. We just focus on the two
following definitions.

First, the Cat XL arrangement can be defined on a claim number basis. Let λ

denote the deductible in terms of number of claims. Then, the cedant’s retention and
the reinsurer’s intervention are respectively given by:

X[ret1] = min

{
X[P], λ

K
X[P]

}
(2.5.5a)

X[ced1] = max

{
0,

K − λ

K
X[P]

}
(2.5.5b)

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Note that, according to this definition, if X[P] is large then X[ret1] is large. Thus,
the reinsurance arrangement is effective if individual claims have approximately
the same amount, and hence the total payment X[P] mainly depends on the number
of claims. Otherwise, effectiveness can be gained via a preliminary surplus or XL
reinsurance.

Another definition of the Cat XL arrangement is based on the amount X[P] of the
total payment. Let Λ denote the deductible (in monetary terms). Then:

X[ret2] = min{X[P],Λ} (2.5.6a)

X[ced2] = max{X[P] − Λ, 0} (2.5.6b)

Example 2.5.1 Consider the Cat XL reinsurance defined by Eqs. (2.5.5), with c = 5,
and λ = 8. According to the outcome of the number of claims, K , we have the
following situations:

K =
no cat︷ ︸︸ ︷

1, 2, 3, 4, 5, 6, 7, 8,︸ ︷︷ ︸
no reinsurer’s intervention

9, 10, 11, . . .︸ ︷︷ ︸
reinsurer’s intervention

Move to the Cat XL arrangement defined by Eqs. (2.5.6), still with c = 5, and with
Λ = 1 200. Then, we have

K =
no cat︷ ︸︸ ︷

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .︸ ︷︷ ︸
possible reinsurer’s intervention, depending on X[P]

Consider the following cases:

(a) K = 10, X[P] = 1 000;
(b) K = 10, X[P] = 5 000.

In case (a), according to the first Cat XL arrangement we have:

X[ret1] = 8

10
1 000 = 800, X[ced1] = 2

10
1 000 = 200

whereas the second arrangement yields:

X[ret2] = 1 000, X[ced2] = 0

In case (b), the first arrangement leads to:

X[ret1] = 8

10
5 000 = 4 000, X[ced1] = 2

10
5 000 = 1 000
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while the second yields:

X[ret2] = 1 200, X[ced2] = 3 800

❑

Example 2.5.2 Consider a portfolio of n basic risks, and assume x(j) = x, for j =
1, 2, . . . , n. Then:

X[P] = Kx

The two Cat XL arrangements respectively lead to:

X[ret1] = min

{
Kx,

λ

K
K x

}
= x min{K, λ}

X[ret2] = min{K x,Λ}

If we define

λ = Λ

x

then we have:
X[ret2] = min{K x, λ x} = x min{K, λ}

and hence:
X[ret1] = X[ret2]

Then, in a portfolio homogeneous in terms of sums insured, the two Cat XL arrange-
ments lead to the same retention. ❑

2.5.4 Purposes of Reinsurance

Although, from a strictly actuarial point of view, it is apparent that reinsurance
arrangements aim to keep the portfolio riskiness at a level acceptable by the insurance
company, resorting to reinsurance can have various purposes. Some considerations
follow:

1. As regards the reduction of the portfolio riskiness, it should be noted that reinsur-
ance arrangements mainly aim at reducing the impact of random fluctuations and
catastrophic events. In fact, the reinsurance company is willing to take the ceded
risks as it can achieve a higher pooling effect and hence an improved diversifi-
cation of risks (see Sects. 2.3.1 and 2.3.2). From the point of view of the cedant,
more insurance implies:

• a lower capital allocation;
• an increased underwriting capacity.
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Conversely, risks affected by possible systematic deviations could be rejected by
reinsurers, as these deviations affect the pool as an aggregate, and the total impact
on portfolio results increases as the portfolio size increases. Notwithstanding, the
reinsurer can take the risk of systematic deviations, with the proviso that a further
transfer of this risk can be worked out. We will address this issue in Sect. 2.6.

2. The cedant company can benefit from technical advice provided by the reinsurer.
In particular:

• the reinsurer, thanks to specific experience, can suggest statistical bases and
inform about market features for new insurance products;

• as regards in-force portfolios, the reinsurer can provide the cedant with an
update of statistical bases (which is more effective if a quota-share arrangement
works, as this allows the reinsurer to monitor all claims pertaining to the
reinsured portfolio).

3. Reinsurance can have a “financing” role, thanks to a sharing of policy and portfolio
expenses between the cedant and the reinsurer.

2.5.5 Insurance–Reinsurance Networks

Figure 2.27 illustrates an insurance–reinsurance network. Following the paths
marked by solid arrows, we first find an example of direct insurance (or primary
insurance): insurer X directly takes risks from clients A1, A2, …, An. Hence, X
works in the insurance market. Then, we find examples of cession: insurer X cedes
risks to Y and Z; for example, policies implying a huge exposure are only partially
accepted by Y, so that the residual portions are ceded to Z. Thus, companies Y and
Z provide company X with reinsurance. Finally, company Y cedes to W part of the
risks, in particular taken from X; this reinsurance transaction is called retrocession.

Further examples can be found following the paths marked by dashed arrows.
First, we find another example of direct insurance: insurer Y directly takes risks
from clients B1, B2, …, Bm. Note that company Y works both in primary insurance
and in reinsurance as well, as it takes risks ceded by company X. The relationship
between X and Y is twofold, as Y also cedes risks to company Y. Finally, we note that
companies X and Y share a risk ceded by client B1, and this constitutes an example
of coinsurance.

Reinsurance arrangements can be stated on various bases, for the cedant and the
reinsurer respectively:

1. facultative/facultative (briefly, facultative);
2. obligatory/obligatory (briefly, obligatory);
3. facultative/obligatory (briefly, facob).

According to an arrangement of type 1, if an insurer is willing to cede a risk
to a reinsurer, then the reinsurer can decide to accept the risk itself. Usually, this
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Company W

Fig. 2.27 Insurance, coinsurance, and reinsurance: a network

arrangement concerns the cession of single risks, in particular those involving huge
exposures.

Types 2 and 3 require that a reinsurance contract, usually called a treaty, has been
written by the cedant and the reinsurer. In particular, in an arrangement of type 2 the
insurer is obliged to cede portions (as defined in the treaty) of the risks underwritten,
and the reinsurer is obliged to accept them. In type 3, the insurer can decide to cede
risks and, if so, the reinsurer is obliged to take them.

2.5.6 Reinsurance Treaties. Reinsurance Programmes

A reinsurance treaty concerns all the aspects of a reinsurance arrangement, in par-
ticular:

• the time interval of the reinsurance cover;
• the reinsurance form (stop-loss, quota-share, XL, and so on);
• the limitations of the reinsurance cover (priority, upper limit, deductibles, retention

lines, and so on);
• the technical bases for the calculation of the reinsurance premiums, and the con-

ditions concerning the premium payment.

Limitations to a reinsurance cover can be classified into “vertical” and “horizontal”
limitations. Horizontal limitations refer to the total reinsurer’s payment related to the
cover interval; an example is provided by the upper limit in the stop-loss reinsurance
(see Sect. 2.4.2).

Vertical limitations concern the reinsurer’s payment related either to each single
claim or to each single policy. An example of vertical limitations concerning each
single claim is provided by the layering in the XL arrangement (see Sect. 2.5.2).

A reinsurance programme combines several reinsurance treaties, possibly sup-
plemented by facultative reinsurance when needed (for example, in relation to single
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huge exposures), and can involve various reinsurers. Resorting to reinsurance pro-
grammes is more common in non-life insurance, because of the random size of the
claims and, hence, the higher riskiness.

Usually, reinsurance programmes are designed on a class-by-class basis, namely
separate reinsurance programmes concern, for example, fire insurance, third-party
liability, domestic property, and so on. Notwithstanding, reinsurance programmes
can include special treaties arranged to cover risks, although belonging to various
classes, in specific geographic areas, for example exposed to the risk of hurricanes
or earthquakes.

Applying a reinsurance programme to each individual risk within a portfolio
determines a progressive reduction of the cedant’s exposure, and hence of the default
probability. Figure 2.28 illustrates the effect, at a policy level, of an XL reinsurance
followed by a quota-share reinsurance. Figure 2.29, conversely, illustrates the effects
on the portfolio exposure, for which a stop-loss arrangement supplements the rein-
surance covers at a policy level.

Combining quota-share and surplus arrangements provides basic examples of
reinsurance programmes. Assume the retention share a for the quota-share, and the
retention line x[ret] for the surplus. We have, for the jth risk, the following results:

• a quota-share “followed” by a surplus reinsurance leads to the retention

x(j)[ret1] = min{a x(j), x[ret]} (2.5.7)

• a surplus “followed” by a quota-share leads to the retention

x(j)[ret2] = a min{x(j), x[ret]} (2.5.8)

Fig. 2.28 Applying a
reinsurance programme;
effects at policy level
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Fig. 2.29 Applying a reinsurance programme; effects at portfolio level

2.6 Alternative Risk Transfers

2.6.1 Some Preliminary Ideas

The (traditional) insurance–reinsurance process can be split into two basic steps (see
Fig. 2.30):

1. the insurance step, which consists of transferring risks from organizations (indi-
viduals, families, firms, institutions, and so on) to an insurance company, and
whose effects are

a. building up a pool;
b. reducing the relative riskiness (caused by random fluctuations);

2. the reinsurance step, which consists of transferring risks from the insurance com-
pany (the cedant) to the reinsurer, and whose effects are

a. building up larger pools;
b. a further reduction of the relative riskiness (caused by random fluctuations).

However, risk components other than random fluctuations can affect insurers’ and
reinsurers’ results, namely systematic deviations and catastrophic events. As regards
the latter, larger pools can improve diversification, for instance thanks to an increased
variety of geographical locations of insured risks. As regards the former, the relative
impact of systematic deviations is independent of the pool size (and the absolute
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Fig. 2.30 The insurance–reinsurance process

impact increases as the pool size increases). Thus, risk transfer arrangements other
than the traditional reinsurance, namely Alternative Risk Transfers (ART ),

• are needed for transferring (at least to some extent) the risk of systematic devia-
tions;

• can help in managing the catastrophe risk (lowering the cost of reinsurance, and/or
the need for capital allocation).

In the following sections we will focus on ART in life insurance and reinsurance.

2.6.2 Securitization and the Role of Capital Markets

A (simplified) classification of ARTs in the context of life insurance and reinsurance,
hence aiming at the transfer of biometric risks (mortality, longevity, and possibly
disability) is sketched in Fig. 2.31. We note that two basic categories can be identified.

First, risks arising from contingent payments (the benefits provided by the insur-
ance policies) can be packaged into securities traded on the capital market. The trans-
action is usually called securitization. Given the link of the payoff of the securities
(see below) with the insurer’s payments, the expression insurance-linked securities
(briefly ILS) is commonly adopted. More specifically, when biometric risks are con-



2.6 Alternative Risk Transfers 137

ART 

Derivatives 

Funded Unfunded

Mortality  
bonds 

Longevity  
bonds 

q-Forward S-Forward 

Insurance-linked 
securities  (ILS) 

Single-exchange 
Swaps 

Multi-exchange 
Swaps 

Fig. 2.31 Alternative Risk Transfers for biometric risks

cerned, the expressions mortality-linked securities and longevity-linked securities are
frequently used. Examples of ILS follow.

• Mortality bonds are used to (partially) transfer the risk of a mortality higher than
expected, then implying an amount of death benefits paid by an insurer (or rein-
surer) larger than expected. To this purpose, the issuer of the mortality bond (the
insurer or the reinsurer) pays reduced coupons and/or a reduced principal at matu-
rity if the mortality in a given population, called the reference population, is higher
than a stated benchmark, possibly owing to epidemics or natural disasters. Mor-
tality bonds are typically short-term (3–5 years). More details are provided in
Sect. 2.6.4.

• Longevity bonds aim at (partially) transferring the risk of a longevity higher than
expected, hence implying an amount of survival benefits, e.g., life annuities, paid by
an insurer (or reinsurer) larger than expected. The issuer of the longevity bond (the
insurer or the reinsurer) pays reduced coupons (and possibly a reduced principal
at maturity) if the longevity in the reference population is higher than a stated
benchmark. The longevity bonds are typically long-term bonds (20 or more years),
because:

– the longevity risk reveals over a long period of time;
– the insurer (or reinsurer) needs to offset benefit payments throughout long dura-

tions, as the insurance products usually involved are life annuities which are
payable lifelong.
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In the framework of ILS, the following securities can also be placed:

• cat-bonds, for transferring the risk of huge benefit payments due to some
catastrophic event (earthquake, flood, etc.).

An Alternative Risk Transfer belonging to this category is called a funded ART,
as the transaction starts with selling the securities to investors. Investing in ILS
basically relies on a diversification target, assuming that the yield provided by an
ILS is (reasonably) uncorrelated with the performance of most of other securities
traded on the capital market. However, it should be stressed that a counterparty risk
arises for the investor, because of possible default of the bond issuer.

We note that ILS structured as described above implement a hedging strategy
denoted as approach 1b in Sect. 1.3.9. Indeed, the higher is the benefit payout, the
smaller is the payoff of the bond (either in terms of coupons, or principal at maturity,
or both).

It should be stressed that the experienced mortality (or longevity) which is com-
pared to the agreed benchmark is the one observed in the reference population, and
not in the specific insurance portfolio for which the hedging strategy is implemented.
Then, a basis risk arises, because of possible imperfect hedging due to different mor-
tality patterns in the population and the portfolio respectively. When a reference pop-
ulation is considered in defining the ART, the risk transfer is denoted as index-based,
as the population mortality is usually expressed by an appropriate index. Conversely,
in the case the actual portfolio mortality is compared to the benchmark mortality, the
risk transfer is called indemnity-based. Clearly, an index-based transfer is preferred
by investors, as population mortality data are collected and the index calculated by
independent analysts.

The same argument, as regards possible imperfect hedging, also applies to the
derivatives described below.

Remark Motivations other than a risk transfer can underly a securitization transaction. A securiti-
zation can consists in packaging a pool of assets (in particular intangible assets) or, more generally,
a cash-flow stream into securities traded on the capital market. The aim of such a securitization
transaction is to raise liquidity by selling future flows. In the insurance and reinsurance context,
the specific aim can be the recovery of acquisition costs (especially in life insurance) or expected
profits.

Second, specific derivatives, with mortality (or longevity, or disability) in a given
population as the underlying, can be used to face the biometric risks. Examples are
as follows:

• The q-forward (the letter q usually denotes a probability of dying) is a contract
according to which an amount linked to the observed mortality rate in the reference
population at a given future date (the maturity of the contract) will be exchanged
at maturity in return for an amount linked to a benchmark mortality rate agreed at
the time the contract is written.

• The S-forward (the letter S usually denotes the survival function, as we will see
in Sect. 3.9.1, and hence a probability of being alive) is a contract according to
which an amount linked to the observed survival rate in the reference population

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_3
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at a given future date (the maturity) will be exchanged at maturity in return for
an amount linked to a benchmark survival rate agreed at the time the contract is
written.

We note that the q-forward and the S-forward realize a single-exchange swap.

• In general terms, a (multi-exchange) swap is a derivative according to which two
counterparties periodically exchange cash flows. If the underlying is the mortality
(or longevity) in the reference population, the swap can be thought as a sequence
of q-forwards or S-forwards in which all the benchmark mortality (or longevity)
rates are stated at the time the swap contract is written.

An Alternative Risk Transfers belonging to this category is called an unfunded ART ,
as no security is issued and sold.

2.6.3 Organizing a Securitization Transaction

The organizational aspects of a securitization transaction are rather complex.
Figure 2.32 sketches a simple design for a life insurance deal, focussing on the main
agents involved. The transaction starts in the insurance market where policies under-
written give rise to the cash flows which are securitized (at least in part). The insurer
then sells the right to some cash flows to a Special Purpose Vehicle (SPV ), which
is a financial entity established to link the insurer to the capital market. Securities
backed by the chosen cash flows are issued by the SPV, which raises money from
the capital market. Such funds are (at least partially) acknowledged to the insurer.

According to the specific features of the transaction, further items may be added
to the structure. For example, a fixed interest rate could be paid to investors, so that
intervention by a Swap counterparty is required; see Fig. 2.33.

As it has been pointed out above, some counterparty risk is originated by the
securitization transaction. This is due to a possible default of the insurer with respect
to the obligations assumed against the SPV, as well as of policyholders in respect
of the insurer, for example, in the form of lapses which affect the securitized cash-
flow stream. To reduce such default risks, some form of credit enhancement may
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Fig. 2.32 The securitization process in life insurance: a basic structure
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Fig. 2.33 The securitization process in life insurance: a more complex structure

be introduced, both internal (e.g., transferring to the SPV a higher value of cash
flows than those required by the actual size of the securities) and external, through
intervention of a specific entity (issuing, for example, credit insurance, letters of
credit, and so on); see again Fig. 2.33. Further counterparty risk emerges from the
other parties involved, similarly to any financial transaction. Note that intervention
by a third financial institution may anyhow result in an increase of the rating of the
securities.

Further details of the securitization transaction concern services for payments
provided by external bodies, investment banks trading the securities on the market,
and so on. Since we are interested on the main technical aspects of the securitization
process, we do not go deeper into these topics (which, anyhow, do play an important
role for the success of the overall transaction).

2.6.4 An Example: The Mortality Bonds

Insurance-linked securities (ILS) have been briefly addressed in Sect. 2.6.2. We recall
that, when biometric risks are concerned, the payoff of an ILS is contingent on
mortality or longevity in a given reference population; this is obtained, in particular,
by embedding some derivatives whose underlying is a mortality/longevity index
assessed on the given population. As already mentioned, these securities may serve
two opposite purposes: to hedge mortality higher than expected, or survivorship
higher than expected. In the former case, we refer to them as mortality bonds, in
the latter as longevity bonds. We restrict the terminology to “bond,” without making
explicit reference (in the name) to the derivative which is included in the security
(which could be option-like, swap-like, or other) because we are more interested on
hedging opportunities rather than on the organizational aspects of the deal (of course,
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we are anyhow aware of the importance that such aspects play from a practical point
of view, but their discussion goes beyond the aim of this section).

As the purpose of mortality bonds is to hedge the risk of a mortality in excess
of what expected, possibly owing to epidemics or natural disasters, typically a short
position on the bond may offset liabilities of an insurer/reinsurer dealing with life
insurances. We stress that mortality bonds are typically short-term bonds (3–5 years)
and they are linked to a mortality index expressing the frequency of death observed
in the reference population in a given period. Some thresholds are set at bond issue.
If the mortality index outperforms a threshold, then either the principal or the coupon
are reduced.

We now describe some possible structures for mortality bonds. In what follows,
0 is the time of issue of the bond and T its maturity. Further, St denotes the principal
of the bond at time t, and Ct the coupon due at time t. Finally, with It we denote the
mortality index at time t years from bond issue (t = 0, 1, . . . , T). Some structures
are described in Examples 2.6.1 and 2.6.2.

Example 2.6.1 The bond aims at protecting against high mortality experienced
throughout the whole lifetime of the bond itself. This is obtained by reducing the
principal at maturity. Albeit just some ages could be considered in detecting situa-
tions of high mortality, it is reasonable to address a range of ages. Further, the index
should account for mortality over the whole lifetime of the bond. So the following
quantities represent possible examples of mortality index:

IT = max
t=1,2,...,T

{q(t)} (2.6.1)

IT =
∑T

t=1 q(t)

T
(2.6.2)

where q(t) is the observed annual mortality rate averaged over the reference popu-
lation in year t.

At maturity, the principal paid back to investors is

ST = S0 ×

⎧⎪⎨
⎪⎩

1 if IT ≤ λ′ I0

�(IT ) if λ′ I0 < IT ≤ λ′′ I0

0 if IT > λ′′ I0

(2.6.3)

where I0 = q(0), λ′ and λ′′ are two parameters (stated under bond conditions), with
1 ≤ λ′ < λ′′, and �(IT ) is a proper decreasing function, such that �(λ′ I0) = 1 and
�(λ′′ I0) = 0. For example

�(IT ) = λ′′ I0 − IT

(λ′′ − λ′) I0
(2.6.4)
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The coupon is independent of the experienced mortality. In particular, it can be given
by

Ct = S0 (it + r) (2.6.5)

where it is the market interest rate at time t, and r is an extra-yield rewarding investors
for taking the mortality risk. ❑

While the cash flows related to the bond described in Example 2.6.1 try to match
the flows in the life insurance portfolio just at the end of a period of some years, an
alternative design of the mortality bond can be conceived to provide a match on a
yearly basis.

Example 2.6.2 Assume that the coupon is given by

Ct = S0 ×

⎧⎪⎨
⎪⎩

it + r if It ≤ Λ′
t

(it + r)�(It) if Λ′
t < It ≤ Λ′′

t

0 if It > Λ′′
t

(2.6.6)

where Λ′
t , Λ′′

t set two mortality thresholds. For example,

Λ′
t = λ′

E[Dt] (2.6.7)

Λ′′
t = λ′′

E[Dt] (2.6.8)

where 1 ≤ λ′ < λ′′, and E[Dt] is the expected number of deaths in the reference
population (according to a specified mortality assumption). In this structure, the
mortality index It should express the number of deaths in year (t −1, t). The function
�(It) should then be decreasing; for example:

�(It) = Λ′′
t − It

Λ′′
t − Λ′

t
(2.6.9)

As in (2.6.5), the rate r in (2.6.6) is the extra-yield rewarding investors for the
mortality risk inherent in the payoff of the bond. Note that, in this structure, the
principal at maturity can be assumed independent of the experienced mortality, for
example

ST = S0 (2.6.10)

❑
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2.7 The Time Dimension

In this section we focus on how to assess and manage portfolio riskiness according
to a multi-year perspective.

2.7.1 General Aspects

Insurance contracts with durations longer than one year have been addressed in
Chap. 1; see, for example, Cases 4a (The need for resources at retirement), and 4b
(Early death of an individual) in Sect. 1.7.4. Nonetheless, in the present chapter, for
the sake of simplicity, we have mainly focussed on one-year insurance covers; see,
for example, Sects. 2.3 and 2.4, in which the “basic” insurance cover, namely the
Case 2 (Possible loss with fixed amount), has been referred to.

However, a one-year (or, more in general, a one-period) insight into the manage-
ment of an insurance portfolio, whatever the policy term, can provide us just with
a static perspective. Conversely, a number of problems of practical interest can be
properly defined and solved only allowing for a sequence of periods, that is, accord-
ing to a dynamic perspective. The evolution throughout time of the portfolio fund,
which originates from premium income and claim payment, and the related capital
allocation policies constitute important examples of a perspective involving the “time
dimension.”

When defining a multi-period analysis of a portfolio (or an insurance company),
various approaches are available. For simplicity, we assume that all the policies in
the portfolio have the same policy term r. In Figs. 2.34, 2.35 and 2.36 various policy
generations are represented with the aid of a coordinate system that has the calendar
time as abscissa and the duration as ordinate. The solid part of each line represents
the part of the related generation accounted for according to the various approaches.

A run-off analysis only addresses the “in-force” portfolio, namely the policies
already written. Thus, the portfolio is assumed to be “closed” to new entries, and
hence no future business is accounted for. See Fig. 2.34.

Conversely, according to a going-concern approach the portfolio is assumed
“open,” and hence also future business is allowed for. See Fig. 2.35. Of course, such
an approach requires an estimate of the numbers of policies written in the future
years.

The break-up (or wind-up) approach, on the contrary, consists of analyzing the
insurer’s capability of meeting all the obligations assuming that the insurance com-
pany has to stop all business within a very short period (say, one year). Figure 2.36
refers to this approach.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 2.34 Run-off of a
portfolio
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2.7.2 Premiums, Payments, Portfolio Fund

Consider a portfolio consisting of n one-year policies providing the “basic” insur-
ance cover, namely the cover related to Case 2 (Possible loss with fixed amount).
According to a going-concern approach, we assume a time horizon of T years.

As regards the first year, let Π
[P]
0 denote the premium income (including safety

loading) at the beginning of the year, i.e., at time 0. Such an amount is assumed to
be known. Further, let X[P]

1 denote the total random payment, that is,
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X[P]
1 =

n∑
j=1

X(j) (2.7.1)

We assume that, at the beginning of each future year, the insurer underwrites new
policies, which constitute a generation of the same type of the first one (possibly,
however, with a variable size).

So, we generalize the one-year portfolio model by defining, for t = 1, 2, . . . , T ,
the following quantities:

Π
[P]
t−1 = premium income at time t − 1, i.e., at the beginning of year t

X[P]
t = total payment in year t

The annual portfolio result, Z [P]
t , referred at the end of the year, can be defined as

follows:

• if we disregard the time value of money, we have

Z [P]
t = Π

[P]
t−1 − X[P]

t (2.7.2)

• conversely, if we assume that all the claims are paid at the end of the year of
occurrence, and that i is the return on premium investment, we have

Z [P]
t = Π

[P]
t−1 (1 + i) − X[P]

t (2.7.3)

According to the second assumption, the portfolio fund (or surplus), F[P]
t ,

t = 1, 2, . . ., is defined as follows:

F[P]
t =

t∑
h=1

Z [P]
h (1 + i)t−h =

t−1∑
h=0

Π
[P]
h (1 + i)t−h −

t∑
h=1

X[P]
h (1 + i)t−h (2.7.4)

With the (provisional) assumption

F[P]
0 = 0 (2.7.5)

we then find:
F[P]

t = F[P]
t−1 (1 + i) + Z [P]

t ; t = 1, 2, . . . (2.7.6)

namely

F[P]
t =

(
F[P]

t−1 + Π
[P]
t−1

)
(1 + i) − X[P]

t ; t = 1, 2, . . . (2.7.7)

From recursion (2.7.6), it clearly appears that, as regards the annual results, the
hypothesis underlying the definition of F[P]

t is the accumulation of profits (and pos-
sibly losses) in the portfolio fund.
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If the portfolio fund takes, for some t, a negative value, a default (or ruin) situation
occurs. To lower the probability of such an event, shareholders’ capital should be
allocated to the portfolio, in particular at time t = 0. If M0 denotes the (initial)
allocation, the portfolio fund process must be redefined as follows:

F[P]
t = M0 (1 + i)t +

t∑
h=1

Z [P]
h (1 + i)t−h (2.7.8)

which implies
F[P]

0 = M0 (2.7.9)

in recursions (2.7.6) and (2.7.7).

2.7.3 Solvency and Capital Requirements

As seen in Sect. 2.3.8, the insurer’s solvency should be meant in a probabilistic
sense, namely as the capability of meeting, with an assigned (high) probability, the
random payments as described by a probabilistic model (which specifies the claim
probability and, as regards more general insurance covers, the probability distribution
of the claim size, interest rates, expenses, and so on).

The following quantities must be stated:

• the probability of meeting the random payments (say 0.99, or 0.995, …);
• the quantity representing the insurer’s solvency level; for example, the portfolio

fund F[P]
t can be addressed; if, at time t, we have F[P]

t < 0, then the portfolio is in
the default state;

• the time horizon which the concept of solvency is referred to (say 2 years, or 5
years, …).

Note that the time horizon must be chosen, as we are working in a multi-year frame-
work.

In formal terms, the following equation expresses the solvency requirement, when
the fund F[P]

t is addressed to check the solvency:

P[F[P]
1 ≥ 0 ∩ F[P]

2 ≥ 0 ∩ · · · ∩ F[P]
T ≥ 0] = 1 − α (2.7.10)

where 1 − α denotes the stated probability of meeting the random payments (and
hence α denotes the accepted default probability).

In order to achieve the stated probability 1 −α, Eq. (2.7.10) has to be solved with
respect to M0, which enters the definition of the portfolio fund F[P]

t via Eq. (2.7.8).
The following equation represents an alternative solvency requirement:

P[F[P]
T ≥ 0] = 1 − α (2.7.11)
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For a given probability α, Eq. (2.7.11) expresses a requirement weaker than that
expressed by (2.7.10) (trivially, if T > 1). Note, however, that temporary negative
values of the portfolio fund F[P]

t are feasible only if capital outside the portfolio is
available and can be used for an immediate reinstatement of the fund. Thus, require-
ment (2.7.11) should not be adopted when referring to the whole insurance company.

Remark Solvency concepts described above generalize ideas presented in Sect. 2.3.8, referring
to the one-period model. In particular, we note that, given the expression (2.7.8), requirements
expressed by (2.7.10) and (2.7.11) can be interpreted as generalizations of the solvency requirement
(2.3.59).

To achieve a required degree of solvency 1 − α, Eq. (2.7.10), or (2.7.11) must be
solved with respect to capital allocation M0. In practice, numerical methods based
on Montecarlo simulation must be adopted to solve those equations. The simulation
procedure consists in generating a sample of paths of F[P]

t , for t = 1, 2, . . . , T .
Then, the probability P[F[P]

1 ≥ 0 ∩ F[P]
2 ≥ 0 ∩ · · · ∩ F[P]

T ≥ 0] can be estimated via
the sample frequency

number of paths with F[P]
t ≥ 0 for t = 0, 1, . . . , T

number of simulations
(2.7.12)

whereas the probability P[F[P]
T ≥ 0] can be estimated via

number of paths with F[P]
T ≥ 0

number of simulations
(2.7.13)

Example 2.7.1 We refer to a portfolio initially consisting of n = 10 000 one-year
policies, all with sum insured x = 1 000, and claim probability p = 0.005. Assuming
a safety loading rate equal to 10 %, we have a premium income Π

[P]
0 = 55 000.

Further, we assume a time horizon of T = 5 years, and suppose that at the beginning
of each future year a new generation, with the same size and structure of the first one,
enters the portfolio. Finally, we assume an initial capital allocation M0 = 10 000.

Figure 2.37 illustrates 50 paths of the portfolio fund. It has been assumed that
times of claim occurrence and payment are uniformly distributed over each year.
Time value of money has been disregarded (that is, setting i = 0). Moreover, the
construction of the statistical distribution of the portfolio fund F[P]

5 , relying on the
simulated paths, is sketched.

Finally, Figs. 2.38 and 2.39 show the statistical distribution of the fund F[P]
1 and

F[P]
5 , respectively. In particular, it is interesting to note the higher dispersion of the

fund at time t = 5. Further, both statistical distributions reveal a positive frequency
of negative values of the portfolio fund. Clearly, risk management actions should be
taken (e.g., a higher capital allocation) if these frequencies seem to be too high. ❑

Example 2.7.2 To provide an example of capital allocation effects on the solvency
degree, we still refer to the portfolio described in Example 2.7.1. Table 2.20 shows
some probabilities related to the behavior of the portfolio fund F[P]

t . Of course, all the
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Table 2.20 Probabilities concerning the non-negativity of the portfolio fund

M0 P[F[P]
1 ≥ 0] P[F[P]

5 ≥ 0] P[F[P]
1 ≥

0 ∩ · · · ∩ F[P]
5 ≥ 0]

0 0.7844 0.9454 0.6954

5 000 0.9264 0.9710 0.8606

10 000 0.9848 0.9894 0.9518

14 000 0.9970 0.9928 0.9788

probabilities depend on the initial capital allocation M0, and, in particular, increase
as M0 increases.

If we choose, according to the criterion expressed by Eq. (2.7.11), a solvency
degree 1 − α = 0.99, the required capital allocation is M0 = 10 000: indeed
P[F[P]

5 ≥ 0] ≈ 0.99. Conversely, this allocation implies a lower solvency
degree if the criterion expressed by (2.7.10) is adopted: in fact, we find
P[F[P]

1 ≥ 0 ∩ F[P]
2 ≥ 0 ∩ · · · ∩ F[P]

5 ≥ 0] ≈ 0.95.
Finally, we note that if M0 is equal to 0, or anyhow is small, compensations

among period results are possible, as we can realize by comparing P[F[P]
1 ≥ 0] to

P[F[P]
5 ≥ 0]. ❑

2.7.4 Generalizing the Model

The model described above can be generalized in various ways. We just outline some
ideas. For example, we can assume that:

1. policies are issued throughout each year according to a time-uniform stream;
this implies a time-continuous premium income; the premium income cumulated
up to time t, Π [P](t), is given by

Π [P](t) = Π [P] t (2.7.14)

where Π [P] denotes the annual income, assumed constant over time;
2. each (one-year) policy can claim one or more times over the year;
3. each claim has a random size.

Note that, thanks to assumptions 2 and 3 a more realistic representation of claims
in a portfolio is achieved. In the time-continuous setting, it is usual to define, for any
real t (t ≥ 0), the following quantities:

K(t) = number of claims up to time t
X[P](t) = total payment cumulated up to time t
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The quantity K(t), as a function of t, is called the claim number process, whereas
X[P](t) is called the aggregate claim process (see Figs. 2.40 and 2.41).

If we disregard the time value of money (namely, if we assume i = 0), the portfolio
fund process, F[P](t), can be defined as follows:

F[P](t) = M0 + Π [P](t) − X[P](t) (2.7.15)

(see Fig. 2.42).
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process

0 time 

nu
m

be
r 

of
 c

la
im

s 

K (t)

Fig. 2.41 The aggregate
claim process

0 time 

am
ou

nt
s 

X[P](t)

Fig. 2.42 The portfolio fund
process

0 time 

am
ou

nt
s 

Π [P] t + M0

 M0

F[P](t)



2.7 The Time Dimension 151

2.7.5 Solvency and Capital Flows

Also capital allocation strategies, aiming at solvency, can be redesigned in a more
general context. We still assume that the amount M0 represents the initial capital
allocation. Then, we assume that capital flows can take place in various anniversaries,
with the following purposes:

• to protect the portfolio against possible default (see Figs. 2.43 and 2.44);
• to release capital exceeding a reasonable solvency target (see Fig. 2.45).

Note that this more general setting can be properly represented in terms of a
barrier model: the two barriers provide thresholds which suggest capital release and,
respectively, capital allocation to reinstate the portfolio solvency.

Remark Simulations of real-world portfolios require a significant computation time, especially
when a multi-year framework is involved. Hence, alternative approaches leading to feasible formu-
lae, which can approximate the relevant results, can be very useful in insurance practice. In particular,
the so-called short-cut formulae express the required capital, for example, M0, as a function of some
known quantities (e.g., the total amount of insured benefits, the total amount of premiums, etc.) and
a set of parameters which should reflect the risk profile of the portfolio (or the insurance company).
Formulae of this type are proposed, for instance, by the supervisory authorities.
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Fig. 2.45 Portfolio fund
process with capital flows
according to a “barrier”
model
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2.8 References and Suggestions for Further Reading

Also in this section, as in Sect. 1.8, we only cite textbooks dealing with general
aspects of risks and insurance. Studies specifically devoted to non-life insurance, life
insurance, and post-retirement solutions will be cited in the relevant sections of the
following chapters.

Chapters 6, 9 and 15 in Bellis et al. (2003) focus on managing risks, the need for
capital and solvency issues, respectively.

The textbook by Booth et al. (2005) deals with various technical and financial
aspects of life and non-life insurance and pension funds. All the important topics
of risk theory are presented in the book by Daykin et al. (1994), which provides a
significant bridge between theory and insurance practice.

Quantitative tools, and in particular statistical models, used in non-life insurance
are described by Hossack et al. (1983).

The object of Carter (2004) is to explain the fundamental principles and practice of
non-life reinsurance. A more technical presentation of reinsurance issues is provided
by Daykin et al. (1994).

The transfer of risks to capital markets via insurance-linked securities is dealt
with by Barrieu and Albertini (2009). In Aspinwall et al. (2009), longevity bonds are
in particular addressed.

IAA (2004) proposes a classification of insurer’s risks, and the relevant applica-
tions in solvency assessment procedures. Cruz (2009) collects contributions which
aim at defining an ERM framework in insurance and reinsurance. An extensive pre-
sentation of solvency issues, with specific reference to a number of supervisory
systems, is given by Sandström (2006).

Finally, Haberman (1996) provides extensive information about the early history
of risk theory and insurance mathematics and technique up to 1919.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Appendix

As noted in Sect. 2.3.5, various approximations to the (exact) probability distribu-
tion of the total random payment X[P] can be adopted. Whatever the approximating
distribution may be, the goodness of the approximation must be carefully assessed,
especially with regard to the right tail of the distribution itself, as this tail quantifies
the probability of large payments.

The following examples can provide some ideas about the degree of approximation
obtained by using the Poisson (see (2.3.22)–(2.3.24)) and the Normal approximation
(see (2.3.25)–(2.3.30)) to the binomial distribution (given by (2.3.21)).

Assume the following data:

• individual loss: x(j) = 1, for j = 1, . . . , n;
• probability: p = 0.005;
• pool sizes: n = 100, n = 500, n = 5 000.

The (exact) binomial distribution and the normal approximation have been
adopted for n = 500 and n = 5 000; the (exact) binomial distribution and the
Poisson approximation have been used for n = 100. Tables 2.21, 2.22 and 2.23 and
Figs. 2.46 and 2.47 show numerical results.

Table 2.21 Right tails of Binomial distribution and Normal approximation

n = 500; E[X[P]] = 2.5 n = 5 000; E[X[P]] = 25

P[X[P] > k] P[X[P] > k]
k Binomial Normal k Binomial Normal

5 0.04160282 0.056471062 30 0.136121887 0.158048811

6 0.013944069 0.013238288 35 0.022173757 0.022480517

7 0.004135437 0.002164124 40 0.001983179 0.001316908

8 0.001097966 0.000244022 45 0.000101743 3.03545 E−05

9 0.000263551 1.88389 E−05 50 3.13201 E−06 2.68571 E−07

10 5.76731 E−05 9.90663 E−07 55 6.02879 E−08 8.9912 E−10

… … … … … …
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Table 2.22 Binomial distribution and Poisson approximation

n = 100; E[X[P]] = 0.5

P[X[P] = k]
k Binomial Poisson

0 0.605770436 0.60653066

1 0.304407255 0.30326533

2 0.075719392 0.075816332

3 0.012429649 0.012636055

4 0.001514668 0.001579507

5 0.000146139 0.000157951

6 1.16275 E−05 1.31626 E−05

7 7.84624 E−07 9.40183 E−07

8 4.58355 E−08 5.87614 E−08

9 2.35447 E−09 3.26452 E−09

10 1.07667 E−10 1.63226 E−10

… … …

Table 2.23 Right tails of Binomial distribution and Poisson approximation

n = 100; E[X[P]] = 0.5

P[X[P] > k]
k Binomial Poisson

3 0.001673268 0.001752

4 0.000158599 0.000172

5 1.24604 E−05 1.42 E−05

6 8.32926 E−07 1.00 E−06

7 4.83022 E−08 6.22 E−08

… … …
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Fig. 2.46 Probability distribution of the random payment (n = 500). Binomial distribution and
normal approximation
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Fig. 2.47 Probability distribution of the random payment (n = 5 000). Binomial distribution and
normal approximation

The following aspects should be stressed. In relation to portfolio sizes n = 500
and n = 5 000, the normal approximation tends to underestimate the right tail of the
payment distribution (see Table 2.21). Conversely, the Poisson distribution provides
a good approximation to the exact distribution, also for n = 100 (see Tables 2.22 and
2.23); unlike the normal approximation, the Poisson model tends to overestimate the
right tail, so that a prudential assessment of the payment follows.



Chapter 3
Life Insurance: Modeling the Lifetime

3.1 Introduction

When writing insurance contracts, the insurer takes risks originating from various
causes. In life insurance, causes of risk relate to financial aspects (e.g., investment
yield, inflation, etc.), demographical aspects (e.g., lifetimes of policyholders, lapses
and surrenders, etc.), expenses. In this chapter, we deal with demographical aspects
only, focussing on policyholders’ lifetimes, which in turn determine the frequency
of death in a portfolio.

A number of risk factors affect individual mortality. Important risk factors are age,
gender, health status, profession, smoking habits, etc. So formulae used to calculate
premiums and reserves for life insurance and annuity products should allow for
various risk factors. In particular, the insured’s age enters formulae via the age pattern
of mortality, which is a structure linking probabilities of survival and death to the
attained age.

The age pattern of mortality can be specified, in quantitative terms, using various
“tools.” A common choice, rather usual in actuarial practice, consists in taking the
so-called life table as the basis for premium and reserve calculation.

Remark Mortality data and mortality assumptions constitute a critical issue in life insurance
technique. However, need for mortality data and models also arise in a number of other fields, for
example, social security, pension funds, health care (both public and private), and so on.

3.2 Life Tables

3.2.1 Elements of a Life Table

The expression life table is commonly used to denote a set of sequences, like those
represented in Table3.1. The first column indicates the age, denoted by x . In the

© Springer International Publishing Switzerland 2015
A. Olivieri and E. Pitacco, Introduction to Insurance Mathematics,
EAA Series, DOI 10.1007/978-3-319-21377-4_3
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Table 3.1 A life table

x �x dx 1 000 qx

0 100 000 879 8.788

1 99 121 46 0.461

2 99 076 33 0.332

. . . . . . . . . . . .

50 93 016 426 4.582

51 92 590 459 4.961

. . . . . . . . . . . .

108 1 1 1 000.000

109 ≈ 0 ≈ 0 −

second column, the �x ’s represent the estimated (rounded) numbers of people alive at
age x in a properly definedpopulation.The exactmeaningof the�x ’swill be explained
after discussing two approaches to the calculation of these numbers. Whatever the
exact meaning, the numbers �0, �1, �2, . . . , constitute a decreasing sequence. Note
that, in Table3.1, �109 ≈ 0; thus, 108 represents the maximum attainable age, or
limiting age. This age is usually denoted by ω; hence, �ω > 0 whilst �ω+1 = 0.

The sequences of dx ’s and qx ’s are strictly related to the �x ’s. In particular, dx

denotes the number of deaths between exact age x and x + 1; thus

dx = �x − �x+1 (3.2.1)

Note that
ω∑

x=0

dx = �0 (3.2.2)

The quantity qx is the probability of an individual aged x dying within 1 year, and
can be expressed as follows:

qx = dx

�x
(3.2.3)

Expression (3.2.3) will be discussed further in the following sections.
The graphs obtained by plotting the �x ’s and the dx ’s against age x are usually

called the survival curve and the curve of deaths, respectively; see Example3.2.1.

3.2.2 Cohort Tables and Period Tables

Assume that the sequence �0, �1, . . . , �ω is directly provided by statistical evidence,
that is, by a longitudinal mortality observation of the actual numbers of individuals
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alive at age 1, 2, . . . , ω, out of a given initial cohort consisting of �0 newborns. Thus,
the observation is by year of birth. The sequence �0, �1, . . . , �ω is called a cohort
life table.

If ω is the limiting age, then the construction of the cohort table requires ω + 1
years.

Assume, conversely, that the statistical evidence consists of the frequency of death
at the various ages, observed throughout a given period, for example one year. Thus,
the mortality observation is by year of death. Further, assume that the frequency of
death at age x (possibly after a smoothing with respect to x) is an estimate of the
probability qx .

Then, for x = 0, 1, . . . , ω − 1, define

�x+1 = �x (1 − qx ) (3.2.4)

with �0 (the radix) assigned (e.g., �0 = 100 000), and ω denoting, as previously, the
age such that �ω > 0 and �ω+1 = 0 (or �ω+1 ≈ 0). Hence, �x is the expected number
of survivors out of a notional cohort (also called a synthetic cohort) initially consisting
of �0 individuals. The sequence �0, �1, . . . , �ω, defined by recursion (3.2.4), is called
a period life table, as it is derived from period mortality observations.

Period observations are also called cross-sectional observations, because they
analyze (in terms of the frequency of death) an existing population “across” the
various ages. Note, in particular, that the qx ’s derive from the observed mortality of
people born ω,ω − 1, . . . , x, . . . , 1, 0 years before the observation year.

An important hypothesis underlying recursion (3.2.4) should be stressed. As the
qx ’s are assumed to be estimated frommortality experience in a given period (say, one
year), the calculation of the �x ’s relies on the assumption that the mortality pattern
does not change in the future.

Statistical evidence shows that human mortality, in many countries, has declined
over the twentieth century, and in particular over its last decades (formore details, see
Sect. 3.8.1). So the hypothesis of a “static” mortality cannot be assumed in principle,
at least when long periods of time are referred to. Hence, in life insurance applica-
tions, the use of period life tables should be restricted to products involving short or
medium durations (5 to 10years, say), like the term insurance and the endowment
insurance, while it should be avoided when dealing with life annuities and pension
plans. Conversely, life annuities and pensions require life tables which allow for the
anticipated future mortality trend, namely projected life tables constructed on the
basis of the experienced mortality trend. This topic will be dealt with in Sects. 3.8.2
to 3.8.5.

Example 3.2.1 In Fig. 3.1, a survival curve is plotted. The �x ’s are calculated starting
from a period mortality observation. The related dx ’s, which constitute the curve of
deaths, are plotted in Fig. 3.2.
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Fig. 3.1 �x in the Italian
male population—1992
(source: ISTAT)
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Some features, which are shared by most life tables, clearly emerge (in particular
looking at the curve of deaths):

1. the infant mortality;
2. the mortality hump at young-adult ages, mainly due to accidental deaths;
3. the age of maximum mortality (at old ages).

Note that the point of highestmortality (at old ages) in the curve of deaths corresponds
to the inflexion point in the survival curve. ❑
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3.2.3 Construction of a Period Life Table

Several methods can be adopted for constructing a period life table. As a detailed
discussion of this topic is beyond the scope of this book, we just mention a method,
which can be implemented in order to obtain a numerical assessment of the one-year
probabilities of dying.

We denote with θx the observed number of deaths between age x and x + 1,
and with ETRx , the number of individuals exposed to risk, i.e., “generating” the
θx deaths. The number ETRx can be estimated according to various approaches.
Here, we briefly describe the so-called census method. We assume one year as the
observation period.

Let Px (0) denote the size of the population aged between x and x + 1 at the
beginning of the year (i.e., at time 0), and Px (1) the size of the population aged
between x and x + 1 at the end of the year (time 1). In Fig. 3.3, the numbers Px (t),
for x = 0, 1, . . . , referred to a generic time t , are depicted, separately for males ([M])
and females ([F]). Lower ages are in the bottom part of the graph. The resulting graph
describes the structure of a population by age and gender, and is usually called in
Demography the age-gender pyramid (or the population pyramid). Note that the
shape of the “pyramid” reflects the evolution of a population over time: for example,
a small size in the low age classes, compared to the size in the medium and high age
classes, denotes an aging population.

Fig. 3.3 Population
structure at time t , by age
and gender
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We define the number of individuals exposed to risk as follows:

ETRx = Px (0) + Px (1) + θx

2
(3.2.5)

Thus, we take as exposed to risk first the average between the population at the
beginning of the year and the population at the end of the year, both populations
consisting of individuals aged between x and x + 1; further, we add to this quantity
one half of the number of people dying in the year, as we assume that the deaths
occur on average at the mid of the year.

The frequency of death at age x , denoted with q̂x , is then calculated as follows:

q̂x = θx

ETRx
(3.2.6)

The q̂x ’s, which result from statistical observation, are called raw mortality rates.
As they may have an erratic behavior, for example because of very small popu-
lation sizes at very old ages, whereas previous experience and intuition suggest a
smooth progression, a graduation procedure is usually applied to the sequence of
q̂x . Smoothed period mortality rates should exhibit a progressive change over a set
of ages, without sudden and/or huge jumps, which cannot be explained by intuition
nor supported by past experience.

Various approaches to graduation can be adopted. In particular, two broad cate-
gories can be recognized:

• parametric graduation, involving the use of mortality laws;
• non-parametric graduation.

According to a parametric approach, a functional form is chosen (some examples will
be presented in Sects. 3.3.2 and 3.9.5), and the relevant parameters are estimated in
order to find the parameter values which provide the best fit to the observed mortality
rates. Various fitting criteria can be adopted for parameter estimation, for example
maximum likelihood.

The choice of a particular functional form is avoided when a non-parametric
graduation method is adopted. Traditional methods in this category are, for example,
the weightedmoving average methods. In what follows, we simply assume that some
graduation procedure has been applied to raw mortality data, providing as its output
a set of graduated values.

We denote with qx , x = 0, 1, 2, . . . the graduated values, and we assume qx as
the probability of an individual age x dying within one year, thus before reaching
age x + 1. Hence, the qx ’s are the annual (or one-year) probabilities of death.

Finally, the �x ’s can be calculated by the relation (3.2.4). Figure3.4 summarizes
the procedure which, starting from the population structure, leads to the sequence
of �x .
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Fig. 3.4 From the population structure by age to the life table

3.2.4 “Population” Tables versus “Market” Tables

Mortality data, and hence life tables, can originate from observations concerning
a whole national population, a specific part of a population (for example, retired
workers, disabled people, etc.), an insurer’s portfolio, a pension plan, and so on.

Life tables constructed on the basis of observations involving a whole national
population (usually split into females and males) are commonly referred to as pop-
ulation life tables.

Market life tables are constructed using mortality data arising from a collection
of insurance portfolios and/or pension plans. Usually, distinct tables are constructed
for insurance products providing death benefits (for example term insurances), life
annuities purchased on an individual basis, and pensions (namely annuities paid to
the members of a pension plan).

The rationale for distinct market tables lies in the fact that mortality levels may
significantly differ as we move from one type of insurance product to another. This
aspect will be discussed in Sect. 3.6.2.
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Market tables provide experience-based data for premiumand reserve calculations
and for the assessment of expected profits. Population tables can provide a starting
pointwhenmarket tables are not available.Moreover, population tables usually reveal
mortality levels higher than those expressed by market tables, and hence are likely to
constitute a prudential (or conservative, or on the safe-side) assessment of mortality
in portfolios of insurance products providing death benefits. Thus, population tables
can be used when pricing such products, in order to include a profit margin (or an
implicit safety loading) into the premiums.

3.2.5 The Life Table as a Probabilistic Model

We now assume that the sequence �0, �1, . . . , �x , . . . , �ω constitutes our database,
and define various probabilities, useful in life insurance calculations, taking this
sequence as the starting point.

We denote by px the probability of an individual age x being alive at age x + 1.
Clearly,

px = 1 − qx (3.2.7)

and hence (see Eq. (3.2.4))

px = �x+1

�x
(3.2.8)

Further, we denote by k px the probability that an individual age x is alive at age
x + k. This event can be expressed in terms of one-year events concerning a given
individual, namely

• the individual age x is alive at age x + 1;
• the individual age x + 1 is alive at age x + 2;
• . . .

• the individual age x + k − 1 is alive at age x + k.

Hence,
k px = px px+1 . . . px+k−1 (3.2.9)

and then, using (3.2.8), we find

k px = �x+1

�x

�x+2

�x+1
. . .

�x+k

�x+k−1
= �x+k

�x
(3.2.10)

Note that, clearly, 0 px = 1. Conversely, 1 px = px . The following relation is
useful in a number of actuarial calculations:

k+ j px = k px j px+k (3.2.11)
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We denote by kqx the probability that an individual age x dies before attaining
age x + k. We have

kqx = 1 − k px = �x − �x+k

�x
(3.2.12)

Of course, 0qx = 0, whereas

1qx = qx = �x − �x+1

�x
= dx

�x
(3.2.13)

Remark Sometimes, the one-year probabilities qx and px are called mortality rates and survival
rates, respectively.We prefer to avoid these expressions to denote probabilities of death and survival,
as the term “rate” should be referred to a counter expressing the number of events per unit of time.

The probability of an individual age x dying between age x + h and x + h + k is
denoted with h|kqx . The event can be split as follows:

• the individual age x is alive at age x + h;
• the individual age x + h dies before age x + h + k.

Hence, we have

h|kqx = h px kqx+h = �x+h − �x+h+k

�x
(3.2.14)

The probability h|kqx is usually called “deferred” probability of dying, the deferment
being the period of h years.

The following relations can be easily interpreted and proved using the formulae
presented above:

h|kqx = h+kqx − hqx = h px − h+k px (3.2.15)

3.2.6 One-Year Measures of Mortality

Consider the probability defined in (3.2.14). In particular, with k = 1, we find

h|1qx = h px qx+h = �x+h − �x+h+1

�x
= dx+h

�x
(3.2.16)

Referring to a newborn, namely setting x = 0, we have

h|1q0 = dh

�0
(3.2.17)

We note that
ω∑

h=0

h|1q0 = 1

�0

ω∑
h=0

dh = 1 (3.2.18)
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age x0

qx

1 1

age x0

x|1q0
(a) (b)

Fig. 3.5 One-year probabilities of death

Actually, the h|1q0’s constitute the probability distribution of the lifetime of a new-
born (with integer outcomes 0, 1, . . . , ω; see Sect. 3.2.7). In particular, 0|1q0 is the
probability of death during the first year of life, 1|1q0 is the probability of death
during the second year of life, and so on. Further, for all integer k, we have

ω∑
h=k

h|1q0 = 1

�0

ω∑
h=k

dh = �k

�0
= k p0 (3.2.19)

Consider the following probabilities:

• qx , expressed by (3.2.13);
• x |1q0, expressed by (3.2.17) replacing h with x .

Both the probabilities quantify one-year mortality, namely between age x and x + 1.
Figure3.5 illustrates the behavior of the two probabilities as functions of age x
(assuming, for simplicity, that x can take all real values). We note that qx (see
Fig. 3.5a) refers to an individual alive at age x , whereas x |1q0 (see Fig. 3.5b) refers to
a newborn. A different behavior is easily explained looking at the definitions of the
two one-year probabilities, i.e., (3.2.13) and (3.2.17), respectively, and noting that
�x decreases as x increases. In particular, when �x is close to �0, the two graphs are
quite similar, whereas as �x strongly decreases, qx definitely increases. Note also
that the behavior of the x |1q0 trivially reflects the behavior of the dx (for example,
see Fig. 3.2).

Another one-year measure of mortality can be defined, namely the quantity

mx = dx

�x + �x+1

2

(3.2.20)

usually called the central mortality rate.
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Table 3.2 One-year measures of mortality

Definition Usual name Age referred to Exposed to risk

qx = dx

�x
(Initial) mortality rate x �x

x |1q0 = dx

�0
Deferred mortality rate 0 �0

mx = dx

�x + �x+1

2

Central mortality rate x
�x + �x+1

2

φx = qx
1−qx

Mortality odds x �x

It is interesting to compare mx to the probability qx (see (3.2.13)). Both the
quantities relate the expected number, dx , of people dying between age x and x +1 to
an expected number of “exposed to risk.” The latter takes as the number of exposed
to risk the quantity �x , namely the “initial” number of people in the age interval
(x, x +1), whereas the former relates the numerator to the average number �x + �x+1

2 ,
i.e., the “central” number of people in the same age interval.

Finally, we introduce a further quantity related to one-year mortality. When qx

can be expressed as qx = φx
1+φx

, the function φx represents the so-called mortality
odds, namely

φx = qx

1 − qx
(3.2.21)

From 0 < qx < 1 (for x < ω), it follows that φx > 0. Thus, focussing on the
odds, rather than the annual probabilities of dying, can make easier the choice of a
mathematical formula fitting the age pattern of mortality (see Sect. 3.3.2), as the only
constraint is the positivity of the odds.

Table3.2 summarizes these one-year measures of mortality. As regards the use
of the term “rate” (common in actuarial practice) also to denote the probabilities qx

and x |1q0, see the Remark in Sect. 3.2.5.

Example 3.2.2 A life table includes the elements represented in Table3.3.
For example, the following probabilities can be calculated:

1. the probability of a newborn (i.e., age 0) dying between age 65 and 66,

65|1q0 = �65 − �66

�0
= 0.004

2. the probability of a person age 43 being alive at age 65

22 p43 = �65

�43
= 0.87046
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Table 3.3 Expected number
of survivors in a life table

x �x

0 100 000

. . . . . .

40 98 000

41 97 920

42 97 800

43 97 650

44 97 450

45 97 220

. . . . . .

65 85 000

66 84 600

. . . . . .

3. the probability of a person age 40 dying between age 42 and 45

2|3q40 = �42 − �45

�40
= 0.00592

4. the probability of a person age 42 dying between age 42 and 45

3q42 = �42 − �45

�42
= 0.00593

❑

Example 3.2.3 Probabilities 1 and 2 in Example3.2.2 involve very long time inter-
vals (65years as the deferred period in probability 1, and 22years in probability 2).
If the �x ’s are drawn from a period life table, these probabilities (although formally
correct) can be affected by severe errors in the presence of an important mortality
trend.

Conversely, the other two probabilities involve short intervals, and thus can be
reasonably accepted. Hence, an appropriate use of a period life table should be
restricted to rather short intervals, say 10years at most. For example, refer to an
insured age 40 at policy issue; the following probabilities can be used for a five-year
term insurance (see case 4b in Sect. 1.7.4):

1q40 = �40 − �41

�40
, 1|1q40 = �41 − �42

�40
, . . . , 4|1q40 = �44 − �45

�40

❑

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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3.2.7 A More Formal Setting: The Random Lifetime

A more formal setting can be defined if we refer our probabilistic model to the
remaining lifetime of an individual age x . We denote by Tx this lifetime, which is
clearly a random variable.Whatever its outcomemay be, the (random) age at death is
given by Tx +x . The possible outcomes of Tx are the positive real numbers; however,
it is rather usual to take ω − x as the maximum possible outcome.

In particular, T0 represents the total lifetime of an individual age 0, namely a
newborn. Of course, we have

Tx = T0 − x | T0 > x (3.2.22)

In life insurance calculations, probabilities like P[Tx > h], P[h < Tx ≤ h + k],
and so on are needed. When a life table is available, those probabilities can be
immediately derived from the life table itself, provided that ages and durations are
integers. Thus, we have for example

P[Tx > h] = h px = �x+h

�x
(3.2.23)

P[Tx ≤ h] = hqx = 1 − h px = �x − �x+h

�x
(3.2.24)

P[h < Tx ≤ h + k] = h|kqx = �x+h − �x+h+k

�x
(3.2.25)

If we have to calculate probabilities like (3.2.23), (3.2.24), and (3.2.25) when ages
or durations are real number, then an extension of the probabilistic model is needed.
We will address this topic in Sect. 3.9.

The curtate remaining lifetime, usually denoted with Kx , is defined as the integer
part of Tx . Thus, the possible outcomes of Kx are 0, 1, 2, . . . , according to the
following scheme:

0 < Tx < 1 ⇔ Kx = 0
1 ≤ Tx < 2 ⇔ Kx = 1
2 ≤ Tx < 3 ⇔ Kx = 2
. . . . . .

A similar definition applies in particular to the random variable T0, leading to the
curtate total lifetime K0. Note that the probability distribution of K0 is given by

0|1q0, 1|1q0, . . . , x |1q0, . . . , ω|1q0 (3.2.26)
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Indeed, we have

x |1q0 = P[x < T0 ≤ x + 1] = P[K0 = x]; x = 0, 1, . . . , ω (3.2.27)

3.3 A Mortality “Law”

3.3.1 From Tables to Parameters

Since the earliest attempt to describe in analytical terms is a mortality schedule
(due to A. De Moivre and dating back to 1725), great effort has been devoted by
demographers and actuaries to the construction of analytical formulae (or mortality
laws) that fit the age pattern of mortality. When a mortality law is used to fit observed
data, namely a parametric graduation is chosen (see Sect. 3.2.3), the age pattern of
mortality is summarized by a small number of parameters (two to ten, say, in the
mortality laws commonly used in actuarial and demographical applications). Thus,
we can replace the 110, say, items of a life table by a small number of parameters
without sacrificing much information.

Many mortality laws have been proposed in the age-continuous context. Some
of these laws will be presented and discussed in Sect. 3.9.5. Here, we focus on one
type of mortality law only, namely the Heligman–Pollard formula, which, although
defined for any real age x , expresses the one-year probability of death qx and the
mortality odds qx

1−qx
, and hence can perfectly work in a framework in which ages

and durations are integers.

3.3.2 The Heligman–Pollard Law

Heligman and Pollard proposed in 1980 a class of formulae which aim to represent
the age pattern of mortality over the whole span of life. The first Heligman–Pollard
law, expressed in terms of the odds, is

φx = A(x+B)C + De−E(ln x−ln F)2 + GHx (3.3.1)

while the second Heligman–Pollard law, in terms of qx , is given by

qx = A(x+B)C + De−E(ln x−ln F)2 + GHx

1 + GHx (3.3.2)
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Fig. 3.6 The first
Heligman–Pollard law: qx
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Note that, in both cases, at high ages we have

qx ≈ GHx

1 + GHx (3.3.3)

Formula (3.3.3) can be used as an approximation when calculating values related to
life annuities and pensions, e.g., for x ≥ 65.

Two other laws, generalizing the second Heligman–Pollard law, were proposed;
however, a deep analysis of such a topic is beyond the scope of this book.

Example 3.3.1 Assume the followingvalues for the parameters of thefirstHeligman–
Pollard law (see (3.3.1)):

A = 0.000544 B = 0.017
C = 0.101 D = 0.000158
E = 10.72 F = 18.67
G = 0.0000183 H = 1.11

These parameters have been estimated on the basis of a UK mortality experience.1

Figure3.6 illustrates the age pattern of mortality in terms of the probabilities qx .
A better representation, because of the range of values, is provided by the graph
of the logarithms ln qx ; see Fig. 3.7. Finally, the probabilities x |1q0 are depicted in
Fig. 3.8. ❑

1See: Dellaportas P., Smith A.F.M., Stavropoulos P. (2001), Bayesian Analysis of Mortality Data,
Journal of the Royal Statistical Society. Series A, vol. 164 (2), pp. 275–291.
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Fig. 3.7 The first
Heligman–Pollard law: ln qx

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0 20 40 60 80 100 120 140

age

ln
 q

x

Fig. 3.8 The first
Heligman–Pollard law: x |1q0
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3.4 Summarizing a Life Table

Age-specific functions are usually needed in actuarial calculations. For example, in
the age-discrete context, functions like �x , qx , etc. are commonly used in order to
calculate premiums, reserves, and so on.

Nevertheless, the role of single-figure indices, also called markers, which sum-
marize the life table and hence the lifetime probability distribution, should not be
underestimated. In particular, important features of past mortality trends can be sin-
gled out by focussing on the dynamics of some indices over time, as we will see in
Sect. 3.8.1.
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3.4.1 The Life Expectancy

The expected value of the random lifetime is a typical marker. If we refer to the ran-
dom remaining lifetime Tx , whose possible outcomes are the positive real numbers,
the exact calculation of its expected value,E[Tx ], calls for the probability distribution
of Tx , in terms of a mortality “law” defined for all real ages (see Sect. 3.9). When
working in an age-discrete context, and a life table is available, approximations to
the exact value E[Tx ] can be adopted.

First, consider the curtate remaining lifetime, Kx . Its expected value, i.e., the
curtate life expectancy at age x , usually denoted by ex , is given by

ex = E[Kx ] =
ω−x∑
h=0

h h|1qx ; x = 0, 1, 2, . . . (3.4.1)

For x = 0, Eq. (3.4.1) yields the curtate life expectancy at the birth.
Wenote that the expected age at death,which coincideswith the expected total life-

time, is given, according to the curtate life expectancy, by x + ex , for x = 0, 1, 2, . . .
Using (3.2.15), that is, in particular

h|1qx = h px − h+1 px (3.4.2)

we have

ex =
ω−x∑
k=1

k px ; x = 0, 1, 2, . . . (3.4.3)

From (3.4.3), we immediately find

ex = px (1 + ex+1) (3.4.4)

Hence,
1 + ex+1 > ex (3.4.5)

and
(x + 1) + ex+1 > x + ex (3.4.6)

The result expressed by (3.4.6) is self-evident: the expected total lifetime increases
as the attained age increases, because the individual has overcome the risk of dying
in the past years.

We note that Kx ≤ Tx (and Kx < Tx for all the non-integer values of Tx ),
whatever the probability distribution of Tx may be. It clearly follows that the quantity
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ex = E[Kx ] underestimates the correct value of the life expectancy, E[Tx ]. A better

approximation, usually denoted by
◦
ex , is given by the following expression:

◦
ex = E

[
Kx + 1

2

] =
ω−x∑
h=0

(
h + 1

2

)
h|1qx ; x = 0, 1, 2, . . . (3.4.7)

We clearly find
◦
ex = 1

2 + ex (3.4.8)

and hence
◦
ex = 1

2 +
ω−x∑
k=1

k px (3.4.9)

The results expressed by (3.4.5) and (3.4.6) also hold for the quantity
◦
ex . Thus,

we have
(x + 1) + ◦

ex+1 > x + ◦
ex (3.4.10)

We note that, with x = 0, the quantity
◦
e0 is the expected lifetime at the birth,

coinciding with the expected total lifetime.

Example 3.4.1 Table3.4 displays the expected remaining lifetime,
◦
ex , and the

expected total lifetime, x + ◦
ex , for some ages x . The underlying life table has

been constructed using the Heligman–Pollard law, with the parameters specified

in Example 3.3.1. The column x + ◦
ex shows that the expected total lifetime increases

as the attained age x increases (see the inequality (3.4.10)). ❑

Table 3.4 Life expectancy x
◦
ex x + ◦

ex

0 76.782 76.782

1 76.311 77.311

2 75.353 77.353

. . . . . . . . .

40 38.101 78.101

41 37.147 78.147

42 36.197 78.197

. . . . . . . . .

70 12.699 82.699

71 12.045 83.045

72 11.409 83.409

. . . . . . . . .
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Table 3.5 Increments in the expected lifetime
◦
ex (α) − ◦

ex

x α = 0.05 α = 0.10 α = 0.15 α = 0.20 α = 0.25

0 0.553 1.136 1.753 2.407 3.104

40 0.498 1.025 1.585 2.183 2.822

70 0.359 0.744 1.157 1.603 2.087

Example 3.4.2 Starting from a given mortality assumption, a “sensitivity” analysis
can help us in understanding how a change in the mortality assumption impacts
on the life expectancy. Let qx denote the one-year probability of dying and k px the
probability of surviving k years according to a givenmortality assumption. Let qx (α)

denote a reduced one-year probability of dying, defined as follows:

qx (α) = (1 − α) qx with 0 < α < 1 (3.4.11)

and k px (α) the corresponding probability of survival. The related life expectancy,
◦
ex (α), is then given by

◦
ex (α) = 1

2 +
ω−x∑
k=1

k px (α) (3.4.12)

Table3.5 shows the increase in life expectancy, that is,
◦
ex (α) − ◦

ex for some ages
x , corresponding to various reductions defined by the parameter α. The starting
mortality assumption is given by the Heligman–Pollard law, with the parameters
specified in Example3.3.1. ❑

Example 3.4.3 Assume that the life table constructed via a period observation of

mortality in population A leads to the expected lifetime at the birth
◦
e
[A]
0 . A similar

observation concerning populationB leads to
◦
e
[B]
0 . Suppose, for example, thatwefind

◦
e
[A]
0 = 78

◦
e
[B]
0 = 80

How can we interpret the difference
◦
e
[B]
0 − ◦

e
[A]
0 = 2 ? What can we say about the

impact of this difference, for instance, on the costs related to the payment of pensions
and life annuities?

Consider the following statement: “The higher expected total lifetime implies that
the cost for paying a pension to an individual belonging to population B is higher
then the cost concerning an individual in population A, as an individual in B receives
on average two annual payments more.” This statement may be wrong. Let us try to
understand why.
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The expected total lifetime
◦
e0 depends on the probability distribution of the ran-

dom variable K0 (see Eq. (3.4.7), with x = 0), hence including, in particular, the
infant mortality and the young-adult mortality hump (see Fig. 3.5b). So the higher

value of
◦
e
[B]
0 can be explained, in particular, in terms of

1. a lower infant mortality;
2. a lower mortality at young-adult ages;
3. a longer life expectancy for people who reach, for example, age 65.

Clearly, items 1 and 2 cannot support the above statement. Conversely, item 3 does
support the statement itself, and, at the same time, stresses an interesting aspect.When
pension problems are dealt with, a useful information is provided by the expected
remaining lifetime at a given adult age, say 65 or 70. So, if we find, for example,
◦
e
[B]
65 >

◦
e
[A]
65 , then we can state that the costs for paying pensions to individuals

in population B are likely to be higher than the costs concerning individuals in
population A. ❑

The probabilities adopted in the previous formulae are commonly provided by

cross-sectional observations. Then, the expected values ex and
◦
ex represent period

life expectancies, and hence rely on the hypothesis of staticmortality (see Sect. 3.2.2).
Expected values calculated accounting for future mortality trend will be introduced
in Sect. 3.8.3.

3.4.2 Other Markers

A number of markers, other than the expected total lifetime (or the expected remain-
ing lifetime at some given age), can be adopted to summarize a life table. Some
examples are as follows:

• The Lexis point is the modal value, at old ages, of the probability distribution of
the total lifetime, namely the (old) age with the highest mortality, i.e., the highest
dx (and hence the highest x |1q0).

• The variance of the probability distribution of the total lifetime (or its standard
deviation) is a traditional variability measure.

• The probability that a newborn dies before a given age x ′, namely x ′q0, provides,
for x ′ small (say 1, or 5), a measure of the infant mortality.

Although these and other markers, which summarize the probability distribution
of the lifetime, are of great interest in demographical studies, their use is quite
limited in the actuarial field. Actually, life insurance calculations require working
with functions of the random lifetime, rather than directly with the random lifetime
itself.
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Fig. 3.9 From the basic model to more general models

3.5 From the Basic Model to More General Models

The model we have so far dealt with can be considered a “basic” one, as only the
attained age is accounted for in assigning the probability of an individual dying
within one year (or being alive after one year, or after a given number of years, and
so on).

However, statistical experience and, at least to some extent, intuition suggest
that, in many applications among which the life insurance and pension business,
more complex models are needed, for example allowing for heterogeneity (inside
a population) in respect of mortality, for future mortality trends, for the effect of
medical ascertainment in the underwriting process, and so on.

Figure3.9 illustrates themaindirections alongwhichwewill nowmove, in order to
build up more general models to be used in life insurance and pension calculations.
The various terms used in the blocks of the figure will be explained in the next
sections.

3.6 Heterogeneity

3.6.1 Some Preliminary Ideas

Any given population is affected by some degree of heterogeneity, as far as indi-
vidual mortality is concerned. Heterogeneity in populations should be approached
addressing two main issues:
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• detecting and modeling observable heterogeneity factors (e.g., age, gender, occu-
pation, etc.);

• allowing for unobservable heterogeneity factors.

In the insurance framework, heterogeneity factors are also called risk factors (see
Sect. 2.2.7). As regards observable heterogeneity factors, mortality depends on

1. biological and physiological factors, such as age, gender, and genotype;
2. features of the living environment; in particular: climate and pollution, nutritional

standards (mainly with reference to excesses and deficiencies in diet), population
density, hygienic, and sanitary conditions;

3. occupation, in particular in relation to possible professional disability or exposure
to injury, and educational attainment;

4. individual lifestyle, in particular with regard to nutrition, alcohol and drug con-
sumption, smoking, physical activities, and pastimes;

5. current health conditions, personal and/or family medical history, civil status, and
so on.

Item 2 affects the overall mortality of a population. That is why mortality tables
are typically considered specifically for a given geographic area. The remaining items
concern the individual and, when dealing with life insurance, they can be observed
at policy issue. Their assessment is performed through appropriate questions in the
application form and, as to health conditions, possibly through a medical exami-
nation. The specific items considered for insurance rating depend on the types of
benefits provided by the insurance contract (see Sect. 3.6.2), and on possible legis-
lation constraints.

Differences among the individuals can also be attributed to unobservable hetero-
geneity factors. Examples of unobservable factors are the individual’s attitude toward
health, and some congenital personal characteristics.

When allowing for unobservable heterogeneity factors, various approaches can
be adopted. However, the basic idea is that the population life table, or the population
mortality law, should be interpreted as a mixture of a set of tables or laws, each one
expressing a specific level of mortality. We do not deal with these aspects, which are
beyond the scope of this book.

3.6.2 Rating Classes

The observable risk factors lead to a partitioning of the insured population into
risk classes. However, for various reasons, not all the risk factors are allowed for
when pricing an insurance product (and hence a solidarity effect is introduced in the
premium system). Risk factors accounted for in the pricing (or “rating”) procedure
are called rating factors; consequently, the insured population is split into rating
classes (see also Sect. 2.2.7).

The rating procedure should be organized, for any given insurance product, as
follows:

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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1. An appropriate choice of the rating factors should aim at grouping people in
classes within which insured lives bear an analogous expected mortality profile.

2. For each individual applying for insurance, a selection process should be per-
formed, whose aim is to assign the applicant to his/her proper rating class.

When defining a rating procedure, possible adverse selection (or anti-selection)
should be taken into account. This expression denotes a higher propensity to buy
insurance in people bearing a worse risk profile.

The specific risk factors considered for life insurance rating depend, to some
extent, on the types of benefits provided by the insurance contract. Age is always
considered, due to the apparent variability of mortality in this regard. Gender is
usually accounted for, especiallywhen living benefits are involved, given that females
on average live longer than males. This difference clearly appears in Figs. 3.10 and
3.11, in terms of the curves of death and the survival curves, respectively.

Remark It should be stressed that, according to a recent European Union directive, gender is no
longer allowed as a rating factor in pricing insurance (and, in particular, life insurance) products.
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Fig. 3.10 Curves of death in the Italian male and female populations—2002 (source: ISTAT)
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Fig. 3.11 Survival curves in the Italian male and female populations—2002 (source: ISTAT)
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As far as genetic aspects are concerned, the evolving knowledge in this area has
raised a lively debate on whether it is legitimate for insurance companies to resort to
genetic tests for underwriting purposes.

Applicants for life annuities are usually in good health, so a medical examination
is not necessary; on the contrary, a proper investigation is needed for those who buy
death benefits, given that people in poorer health conditions may be more interested
in them and hence more likely to buy such benefits.

When death benefits are dealt with, health conditions, occupation, and smoking
status can be taken as rating factors. These lead to a classification into standard and
sub-standard risks in life insurance. For the latter (also referred to as impaired lives),
a higher premium level is adopted in order to avoid adverse selection, given that
they bear a higher probability to become eligible for the benefit. In some markets,
standard risks are further split into regular and preferred risks, the latter having a
better profile than the former (for example, because they never smoked); as such,
they are allowed to pay a reduced premium rate.

Mortality for people in poorer or better conditions than the average is usually
expressed in relation to average (or standard) mortality. This allows us to deal only
with one life table (or one mortality law), properly adjusted when sub-standard or
preferred risks are dealt with. Thus, if qx denotes the annual probability of death in
the age pattern of mortality taken as the standard, the adjusted probability of death,
q[adj]

x , is assumed to be expressed as follows:

q[adj]
x = �(qx ) (3.6.1)

where � denotes an appropriate function.

3.6.3 Sub-standard Risks

In this section, we introduce some models which can be adopted to express the age
pattern of mortality for sub-standard risks, as a “transform” of the standard mortality.

We denote by x the age at policy issue, and by m the policy term. Further, we
denote by qx+t (0 ≤ t ≤ m − 1) the one-year probability of dying according to the
life table (or the mortality law) adopted for expressing the age pattern of mortality
of standard risks.

A rather general transform is provided by the linear model, that is

q[L]
x+t = (1 + β) qx+t + α; 0 ≤ t ≤ m − 1 (3.6.2)

From this model, more specific transforms can be derived. The additive model
(see Fig. 3.12) is defined by setting β = 0 and α > 0 in (3.6.2). Thus,
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Fig. 3.12 The additive
model
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Fig. 3.13 The multiplicative
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q[A]
x+t = qx+t + α; 0 ≤ t ≤ m − 1 (3.6.3)

Note that the additive model implies an extra mortality, given by α, which is constant
and independent of the initial age. Such a model is consistent, for example, with
extra mortality due to accidents (related either to occupation or to extreme sports).

A slight modification of model (3.6.3) allows us to express a constant extra mor-
tality which, however, depends on the age x at policy issue via the probability of
death qx :

q[A]
x+t = qx+t + α′ qx ; 0 ≤ t ≤ m − 1 (3.6.4)

Conversely, setting α = 0 and β > 0 in (3.6.2), we obtain the multiplicative
model (see Fig. 3.13):

q[M]
x+t = (1 + β) qx+t ; 0 ≤ t ≤ m − 1 (3.6.5)

In this model, the extra mortality is given by β qx+t . In the age intervals of interest,
qx+t increases as the attained age x + t increases. Hence, the multiplicative model
implies an increasing extra mortality.

The evolution of some diseases, which either lead to an early death or have a
short recovery time, suggests the adoption of models implying a decreasing extra
mortality. An example is provided by the following model:

q[D]
x+t =

{
(1 + β) qx+t + α; 0 ≤ t ≤ r − 1

qx+t ; r ≤ t ≤ m − 1
(3.6.6)
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Fig. 3.14 Decreasing extra
mortality
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with 0 < r < m, and α, β such that

(1 + β) qx + α = qx + initial extra mortality (3.6.7)

(1 + β) qx+r + α = qx+r (3.6.8)

We note that, according to model (3.6.6), the extra mortality extinguishes within a
period of r years (see Fig. 3.14).

The mortality pattern of sub-standard risks can be assumed, at least approxi-
mately, as equal to the standard mortality pattern referred to an older individual. The
age-shift model (see Fig. 3.15) implements this idea, and can be considered as an
approximation to the multiplicative model. It is defined as follows:

q[S]
x+t = qx+t+s; 0 ≤ t ≤ m − 1, s > 0 (3.6.9)

A higher increment s in the insured’s age expresses a higher extra mortality (corre-
sponding to a higher value for the parameter β in the multiplicative model (3.6.5)).

3.6.4 The “Factor Formula”

Model (3.6.5) can be used not only to represent a mortality higher than the standard
one. Indeed, setting −1 < β < 0, a mortality lower than the standard is expressed.
So the model can be adopted to represent a wide range of mortality patterns in terms
of the standard one given by the qx+t ’s.

An interesting example is provided by the so-called numerical rating system,
introduced in 1919 by New York Life Insurance and still adopted by many insurers.
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A set of k rating factors is referred to. The annual specific probability of death of a
given individual currently age x + t , q [spec]

x+t , is expressed by the following formula
(also called the factor formula):

q[spec]
x+t = qx+t

(
1 +

k∑
h=1

γh

)
(3.6.10)

The parameters γh lead to a higher or lower death probability for the individual in
relation to the values assumed by the chosen rating factors. Clearly, the following
constraint must be fulfilled for all ages x + t :

− 1 <

k∑
h=1

γh <
1

qx+t
− 1 (3.6.11)

Note that an additive effect of each of the rating factors is assumed.

Remark In insurance practice, a mortality different from the standard one is frequently accounted
for by directly adjusting the premium rates, rather than the probabilities of death. For example,
this may be the case for the age shifting, or the factor formula. Although the results may be quite
similar, at least over some age ranges and for some insurance products, the approach is not formally
correct, as in premium calculation elements other than themortality one are included, e.g., expenses,
financial aspects summarized by the technical rate of interest, etc.

3.7 Mortality by Age and Duration

3.7.1 Some Preliminary Ideas

Consider, for example, a group of insureds, all age 45, belonging to a population
whose mortality can be described by a given life table. Is q45 (drawn from the
assumed life table) a reasonable assessment of the one-year probability of dying for
each insured in the group?

In order to answer this question, the following points should be addressed.

1. When starting a life insurance policy with an insurance company, an individual
may be subject to medical screening and, possibly, to a medical examination (see
Sect. 3.6.2).

2. It has been observed that the mortality experienced by policyholders recently
accepted (as standard risks) is lower than the mortality experienced by policy-
holders (of the same age) with a longer duration since policy issue.

So the answer to the above question is negative if the insureds have entered insurance
in different years: it is reasonable to expect that an individual, who has just bought
insurance, will be of better health than an individual who bought insurance several
years ago, and whose health conditions could have worsened over those years.
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In order to express the dependence of the probability of death also on the time
elapsed since policy issue, i.e., on the past duration of the policy, the attained age
(45, in the example) should be split as follows:

attained age = age at policy issue + time since policy issue

The following notation is usually adopted to address the annual probabilities of death
for an insured currently age 45:

q[45], q[44]+1, . . . , q[40]+5, . . .

where the number in square brackets denotes the age at policy issue, whereas the
second number denotes the time since policy issue. In general, q[x]+u denotes the
probability that an individual currently aged x + u, who bought insurance at age x ,
dies within one year.

According to point 2 above, it is usual to assume

q[45] < q[44]+1 < · · · < q[40]+5 < · · ·

3.7.2 Select Tables and Ultimate Tables

Allowing for the dependence of the probability of death also on the time elapsed since
policy issue requires the use of life tables in which probabilities are functions of

• entry age x , i.e., the age at policy issue;
• past duration u of the policy.

We look at the life table in terms of the probabilities of death. We assume that the
generic row of the table contains the following elements:

q[x], q[x]+1, q[x]+2, . . . , q[x]+u, . . . (3.7.1)

We denote by xmin and xmax the minimum and the maximum age, respectively, at
policy issue (for example, xmin = 20 and xmax = 70 if death benefits are involved).
The set of sequences (3.7.1), for x = xmin, xmin+1, . . . , xmax, is called a select life
table.

However, experience shows that it is reasonable to assume that the selection effect
vanishes after some years, say r years after policy issue. Hence, we can assume

q[x] < q[x−1]+1 < . . . < q[x−r ]+r = q[x−r−1]+r+1 = . . . = q̄x (3.7.2)

where q̄x denotes the probability that an individual currently age x , who bought
insurance more than r years ago, dies within one year. The period r is called the
select period.
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Table 3.6 Select-ultimate table

One-year probabilities of dying

entry age
select ultimate

t = 0 t = 1 . . . t = r −1 t ≥ r

xmin q[xmin] q[xmin]+1 . . . q[xmin]+r−1 q̄xmin+r

. . . . . . . . . . . . . . . . . .
x−1 q[x−1] q[x−1]+1 . . . q[x−1]+r−1 q̄x+r−1

x q[x] q[x]+1 . . . q[x]+r−1 q̄x+r

x+1 q[x+1] q[x+1]+1 . . . q[x+1]+r−1 q̄x+r+1

x+2 q[x+2] q[x+2]+1 . . . q[x+2]+r−1 q̄x+r+2

. . . . . . . . . . . . . . . . . .

Assuming, for example, a select period of r = 3 years, the following probabilities
should be used (rather than those in (3.7.1)) for an individual entering insurance at
age x :

q[x], q[x]+1, q[x]+2, q̄x+3, q̄x+4, . . . (3.7.3)

In general, the set of sequences

q[x], q[x]+1, . . . , q[x]+r−1, q̄x+r , q̄x+r+1, . . . ; for x = xmin, xmin+1, . . . , xmax

(3.7.4)

is called a select-ultimate table. In particular, the table used after the select period,
namely the sequence

q̄xmin+r , q̄xmin+r+1, . . . , q̄z, . . . (3.7.5)

(where z denotes a generic age), is called the ultimate life table. Table3.6 represents
a select-ultimate table. The shaded items constitute the table pertaining to the entry
age x , and correspond to the items listed in (3.7.4).

Life tables in which mortality is assumed to depend on attained age only (as is
the case for the life tables described in Sect. 3.2.2) are called aggregate life tables.
Clearly, the ultimate life table is an aggregate life table.

Figure3.16 illustrates a likely behavior of one-year probabilities of death, in the
select part and the ultimate part of a select-ultimate life table.

Remark The selection effect, due to medical ascertainment (in the case of insurances with death
benefit) or self-selection (in the case of life annuities), operates during the first years after policy
issue, and the related age pattern of mortality is often called issue-select. Another type of selection
is allowed for, when some contingency can adversely affect the individual mortality. For example,
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Fig. 3.16 Select and ultimate probabilities (r = 3)

in actuarial calculations regarding insurance benefits in the case of disability, the mortality of
disabled policyholders is usually considered to be dependent on the time elapsed since the time of
disablement inception (as well as on the attained age). In this case, the age pattern of mortality is
called inception-select.

3.7.3 A Practical Issue

Select probabilitiesq[x]+u should be estimated fromobservations of insureds’mortal-
ity. However, this requires the splitting of the insured population into a high number
of “cells,” as age at policy issue and duration since policy issue should be sepa-
rately accounted for. Likely, such an estimation would be based on small numbers of
individuals in each cell, then leading to a poor reliability of the resulting estimate.

Assume, conversely, that just the ultimate mortality is estimated (that is, irrespec-
tive of the time since policy issue, provided that this time is greater than the select
period), leading to the probabilities q̄z which are functions of the attained age z only.
Then, the selection effect can be expressed using appropriate reduction factors.

Trivially, select probabilities can be formally expressed as follows:

q[x]+u = q̄x+u ρx (u); for u = 0, 1, . . . , r − 1 (3.7.6)

where the factor ρx (u) depends on both the age at entry x and the time u. However,
the use of factors ρx (u) does not reduce the dimension of the estimation problem.
Instead of (3.7.6), we can then assume the (approximate) relation

q[x]+u = q̄x+u ρ(u); for u = 0, 1, . . . , r − 1 (3.7.7)
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where the factor ρ(u) (ρ(u) < 1) only depends on the time since policy issue u (or,
at least, can be assumed to be independent of age x for wide age ranges, say 20 to
40, 41 to 60, etc.).

3.8 Mortality Dynamics

3.8.1 Mortality Trends

In many countries, mortality experience over the last decades shows some aspects
affecting the shape of curves representing the mortality as a function of the attained
age. Figures3.17 and 3.18 illustrate the moving mortality scenario referring to the
Italian male population, in terms of survival curves, i.e., in terms of �x , and curves of
deaths, i.e., in termsofdx . Survival curves and curves of deaths relate to various period
mortality observations from 1881 to 2002 (“SIM t” refers to period observations on
Italian males centered on calendar year t).

Obviously, experienced trends also affect the behavior of other quantities express-
ing the mortality pattern, such as the life expectancy and the mortality rates. In
Fig. 3.19, referring to Italianmales, the life expectancy at the birth, the life expectancy
at age 65, and the mode of the curve of deaths (i.e., the Lexis point) are compared in
their evolution.

Finally, Figs. 3.20 and 3.21 concern the behavior of mortality rates. In Fig. 3.20,
mortality rates qx referring to various life tables are plotted against the age x , while
Fig. 3.21 shows the so-called mortality profiles at various age x in relative terms,
namely the mortality rates qx (t) as functions of calendar year t divided by the mor-
tality rate qx (1881) referring to the oldest table considered.
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Fig. 3.22 Mortality trends in terms of the survival function

Results are self-evident. In particular, the following aspects can be pointed out:

1. an increase in the life expectancy (at the birth as well as at old ages);
2. a decrease in the infant mortality, and in mortality rates in particular at adult and

old ages.

Turning back to the shape of the survival function and the curve of deaths, the
following aspects of mortality in many countries can be singled out:

3. an increasing concentration of deaths around the mode (at old ages) of the curve
of deaths is evident; so the survival function moves toward a rectangular shape,
whence the term rectangularization to denote this aspect (see Fig. 3.22a);

4. the mode of the curve of deaths (which, because of the rectangularization, tends
to coincide with the maximum age ω) moves toward very old ages; this aspect is
called the expansion of the survival function (see Fig. 3.22b);

5. higher levels and a larger dispersion of accidental deaths at young ages (the so-
called young mortality hump) have been more recently observed.



190 3 Life Insurance: Modeling the Lifetime

3.8.2 Representing Mortality Dynamics

The progressive decline of human mortality, witnessed by a number of population
statistics, leads to the rejection of the hypothesis of “static” mortality, which would
lead to biased actuarial evaluations. Trends in mortality imply the use of “projected”
survival models for several purposes in life insurance and annuity calculations.

A dynamic approach to mortality underpins mortality forecasts or projections.
When working in a dynamic context, the basic idea is to express mortality as a
function of the (future) calendar year t . As in actuarial calculations, age-specific
measures of mortality are usually needed, and in a dynamic context, mortality is
assumed to be a function of both age x and calendar year t .

In particular, we now focus on one-year probabilities of death. We denote by
qx (t) the probability that a person age x in the calendar year t dies within one year.
A matrix of one-year probabilities of death is represented in Table3.7.

The probabilities in Table3.7 can be read according to three arrangements:

1. a vertical arrangement (i.e., by columns),

q0(t), q1(t), . . . , qx (t), . . . (3.8.1)

corresponding to a sequence of period life tables, with each table referring to
people living in a given calendar year t ;

2. a diagonal arrangement,

q0(t), q1(t + 1), . . . , qx (t + x), . . . (3.8.2)

corresponding to a sequence of cohort life tables, with each table referring to the
cohort born in a given year t ;

Table 3.7 Annual probabilities of death in a dynamic context

. . . t −1 t t +1 t +2 . . .

0 . . . q0(t −1) q0(t) q0(t +1) q0(t +2) . . .
1 . . . q1(t −1) q1(t) q1(t +1) q1(t +2) . . .
2 . . . q2(t −1) q2(t) q2(t +1) q2(t +2) . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
x . . . qx(t −1) qx(t) qx(t +1) qx(t +2) . . .

x+1 . . . qx+1(t −1) qx+1(t) qx+1(t +1) qx+1(t +2) . . .
. . . . . . . . . . . . . . . . . . . . .
ω . . . qω (t −1) qω (t) qω (t +1) qω (t +2) . . .
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3. a horizontal arrangement (i.e., by rows),

. . . , qx (t − 1), qx (t), qx (t + 1), . . . (3.8.3)

yielding the mortality profiles, with each profile expressing the mortality trend at
a given age x .

In general, the matrix in Table3.7 contains elements referring to past years and
elements referring to future years. The elements referring to past years are usually
derived from period mortality observations, and hence constitute columns of the
matrix in Table3.7. More precisely, we can have period observations in past years
t1, t2, . . . , tn ; probabilities qx (t) for t not coinciding with any observation year, say
t j < t < t j+1, can be derived, for all x , in particular,

(a) by interpolating between qx (t j ) and qx (t j+1);
(b) by fitting (and possibly smoothing) the sequence qx (t1), qx (t2), . . . , qx (tn) via

an appropriate function of time t .

Approach (b) is frequently adopted in projection procedures (see Sects. 3.8.4 and
3.8.5).

Let tn denote the calendar year for which the most recent (reliable) period life
table is available. Thus, probabilities qx (t) for t > tn refer to years for which a life

PAST FUTURE 

x 

0

1

ω
tn tn+1 t* tn+2t1 t2 . . . . .

PROJECTED 
TABLE

DATABASE

PROJECTION

Fig. 3.23 From mortality experience to the projected table
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table is not yet available, in particular future years. Hence, these probabilities should
be estimated using a projection procedure.

For a given year tn and a given maximum year t∗ (time horizon), the projected
life table consists of the sub-matrix

{qx (t)}; x = 0, 1, . . . ω; t = tn + 1, tn + 2, . . . , t∗ (3.8.4)

(see Fig. 3.23).

3.8.3 Probabilities and Life Expectancy in a Dynamic Context

The appropriate use of the one-year probabilities in Table3.7 requires that, in each
year t , probabilities concerning the lifetime of a person age x in that year are derived
from the diagonal

qx (t), qx+1(t + 1), . . . (3.8.5)

that is, from the relevant cohort table. Then, the probability of a person age x in year
t being alive at age x + h is given by

h px (t) = (
1 − qx (t)

)(
1 − qx+1(t + 1)

)
. . .

(
1 − qx+h−1(t + h − 1)

)
(3.8.6)

From probabilities (3.8.6), we can derive the following probabilities of dying:

h|1qx (t) = h px (t) qx+h(t + h) (3.8.7)

and then the cohort life expectancy at age x (namely, the life expectancy of an
individual age x in year t):

◦
ex (t) =

ω−x∑
h=0

(
h + 1

2

)
h|1qx (t) (3.8.8)

Note that, in a dynamic context, formula (3.8.8) should be used instead of (3.4.7),
in order to evaluate the expected lifetime allowing for future mortality trends.

3.8.4 Approaches to Mortality Forecasts

A number of approaches can be adopted to mortality projection, i.e., to the construc-
tion of projected life tables in order to obtain forecasts of future mortality. What-
ever the approach may be, an important role is obviously played by the mortality
experienced in the past, which constitutes the database for the projection procedures.
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Usually, the database consists of period tables (possibly complemented by segments
of cohort tables). According to some approaches, mortality forecasts are only based
on mortality observed in the past, whereas other approaches require further inputs.
We just mention the following approaches, which can provide an insight into fore-
casting methods.

1. The analysis of the mortality profiles for each age x , namely the sequences

qx (t1), qx (t2), . . . , qx (tn) (3.8.9)

can suggest a likely dynamics of qx (t) for t > tn . Basically, the projection pro-
cedure consists in the curve fitting of the observed mortality rates with respect
to time, possibly with a smoothing effect, and the consequent extrapolation to
obtain the one-year probability of dying in future years. Figure3.24 shows the
fitting of the mortality profile for a given age x , which results in the graph of the
function ϕx (t), and the consequent extrapolation. For all t > tn , it is assumed

qx (t) = ϕx (t) (3.8.10)

In the framework of fitting–extrapolation procedures, an important point should
be addressed, namely how are the items in the database interpreted? Depending
on the answer, two classes of projection procedures are defined.

a. If the answer is “data are simply numbers”, then the extrapolation procedure
does not allow for any statistical feature of the information available, as, for
example, the reliability of the data. In this case, the output of the procedure
is, for any given t , just a point estimate of future mortality (see Fig. 3.24).

b. Conversely, when the data are interpreted as the outcomes of random variables
(namely, random frequencies of death), the extrapolation procedure must rely
on sound statistical assumptions and, as a consequence, future mortality can
be represented in terms of both point estimates and interval estimates.

2. When projecting mortality, collateral information available to the forecaster can
be allowed for. Information may concern a wide range of trends and events, for
example, trends in smoking habits, trends in prevalence of some illness, improve-
ments in medical knowledge and surgery, etc. Thus, projections can be performed
according to an assumed scenario. The introduction of relationships between
events (e.g., advances in medical science) and effects (mortality improvements)
underpins mortality projections which are carried out according to assumed sce-
narios. Obviously, some degree of arbitrariness follows, affecting the results.

3. Both extrapolation procedures and scenarios can be used to project mortality by
different causes separately, instead of projecting mortality in “aggregate” terms.
Projections by cause of death offer a useful insight into the changing incidence
of the various causes. Conversely, some important problems arise when this type
of projection is adopted. In particular, it should be stressed that complex inter-
relationships exist among causes of death, while the classic assumption of inde-
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Fig. 3.24 Extrapolation of
the mortality trend
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Fig. 3.25 Extrapolation
results depending on the
calibration period
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pendence is commonly accepted. For example, mortality from heart diseases and
lung cancer are positively correlated, as both are linked to smoking habits. A
further problem concerns the difficult identification of the cause of death for very
old people.

Remark Curve fitting and extrapolation methods rely on the assumption that the observed trend
continues in future years. Even if a very long sequence of observations is available (throughout a
time interval of, say, more than 50years), the past trend addressed in the fitting procedure should
be restricted to rather recent observations, in order to avoid the inclusion of causes of mortality
improvements whose effect should be considered already extinguished. Figure3.25 illustrates a
possible overestimation of future mortality improvements (and hence a possible underestimation
of the future mortality profile, represented by the dashed line), due to a too long period assumed
to construct the fitting curve, that is, also including observations prior to time t1. The choice of an
appropriate period is known as the calibration period selection.

The existence of various approaches tomortality forecasts witnesses that this topic
is very complex. A deeper analysis of these issues is beyond the scope of this book.
Hence, in Sect. 3.8.5, we just mention a simple extrapolation method, which can be
placed in the framework of approach 1(a). Despite the lack of a rigorous statistical
support, such a method is still widely used in the current actuarial practice, at least
to have a first insight into possible future mortality trends. Basic ideas underpinning
approach 1(b) are presented in Sect. 3.8.6.
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3.8.5 Extrapolation via Exponential Formulae

Let us assume that n period observations are available for a given population.
Each observation consists of the age pattern of mortality for a given set of ages,
say xmin, xmin + 1, . . . , xmax. The observation referred to calendar year t j ,
j = 1, 2, . . . , n, is expressed by

qxmin(t j ), qxmin+1(t j ), . . . , qxmax(t j ) (3.8.11)

that is, a (part of a) column of the matrix in Table3.7. Conversely, for each x , the
sequence (3.8.9) represents the observed mortality profile at age x (namely, along a
row of the matrix in Table3.7).

Assume that, for any given age x , the trend observed in the past years can be
fitted by an exponential function ϕx (t). Further, suppose that the observed trend will
continue in future years. Then, future mortality can be estimated extrapolating the
trend itself. In formal terms, we assume that (3.8.10) holds for all t ≥ t ′, with t ′ the
“base year” (e.g., the current year), and we then set

qx (t) = qx (t
′) r t−t ′

x (3.8.12)

where rx is the mortality (annual) variation factor (reduction factor if rx < 1) at age
x , estimated on the basis of the observed mortality profile.

From formula (3.8.12), it follows that if rx < 1 then

lim
t→+∞ qx (t) = 0 (3.8.13)

(see Fig. 3.26a). Although the validity of mortality forecasts should be restricted to
a limited time interval, it is more realistic to assign a positive limit to the mortality
at any age x . To this purpose, the following formula with an assigned (positive)
asymptotic mortality can be adopted:
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(a) (b)

Fig. 3.26 Exponential models
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qx (t) = qx (t
′)

(
λx + (1 − λx ) r t−t ′

x

)
(3.8.14)

where λx ≥ 0 for all x . Thus, the asymptotic mortality at age x is given by

lim
t→+∞ qx (t) = qx (t

′) λx (3.8.15)

(see Fig. 3.26b).

3.8.6 Mortality Forecasts Allowing for Random Fluctuations

A rigorous approach to mortality forecasts should take into account the stochastic
nature of mortality. In particular, the following points should underpin a stochastic
projection model:

• observed mortality rates are outcomes of random variables representing past mor-
tality;

• forecasted mortality rates are estimates of random variables representing future
mortality.

Hence, stochastic assumptions about mortality are required, namely probability
distributions for the random numbers of death (see Sects. 3.10.1 and 3.10.3), and a
statistical structure linking forecasts to observations must be specified (as sketched
in Fig. 3.27).

In a stochastic framework, the results of projection procedures consist in both
point estimates and interval estimates of future mortality rates (see Fig. 3.28) and
other functions of age (e.g., the expected lifetime at age x). Conversely, traditional
fitting–extrapolation procedures, which do not explicitly allow for randomness in
mortality, produce just one numerical value for each future mortality rate. Moreover,

Fig. 3.27 A statistical
approach in the
fitting–extrapolation
procedure
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Fig. 3.28 Point estimation and interval estimation
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Fig. 3.29 Fan chart of the life expectancy

such values can be hardly interpreted as point estimates, because of the lack of an
appropriate statistical structure and model.

An effective graphical representation of randomness in futuremortality is given by
the so-called fan charts; see Fig. 3.29, which refers to the projection of the expected
lifetime. The fan chart shows a “central projection” together with some “prediction
intervals.” The narrowest interval, namely the one with the darkest shading, cor-
responds to a low probability prediction, say 10%, and is included in prediction
intervals with higher probabilities (say 25%, 50%, etc.).

The Lee–Cartermethod (proposed in 1992) represents a significant example of the
stochastic approach to mortality forecasts, and constitutes one of the most influential
proposals in recent times.
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3.9 Moving to a Time-Continuous Context

As seen in Sect. 3.2.7, if we want to evaluate probabilities like (3.2.23), (3.2.24),
and (3.2.25) when ages or durations are real numbers, tools other than the life table
are needed. In this section, we describe some tools which allow us to extend the
calculation of probabilities of survival and death to a time-continuous context.

Although in the following chapters calculations concerning life insurance con-
tracts will be presented in a time-discrete context, some important issues suggest us
to extend the survival model to a time-continuous framework. An important example
is provided by the expression of mortality assumptions via the so-called force of
mortality, as we will see in Sects. 3.9.3 and 3.9.5.

3.9.1 The Survival Function

Assume that the function S(t) called the survival function and defined for t ≥ 0 as
follows

S(t) = P[T0 > t] (3.9.1)

has been assigned. Of course, T0 denotes the random lifetime for a newborn.
Consider the probability (3.2.23), which can be expressed as follows:

P[Tx > h] = P[T0 > x + h | T0 > x] = P[T0 > x + h]
P[T0 > x] (3.9.2)

We then find

h px = S(x + h)

S(x)
(3.9.3)

and for probability (3.2.24), we obtain

hqx = S(x) − S(x + h)

S(x)
(3.9.4)

The same reasoning leads to

h|kqx = S(x + h) − S(x + h + k)

S(x)
(3.9.5)

The survival function and the life table are strictly related each other. We note that
since �x is the expected number of people alive out of a cohort initially consisting of
�0 individuals, we have

�x = �0 P[T0 > x] (3.9.6)
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Fig. 3.30 The survival
function

age x0

S(x) 

1

and, in terms of the survival function,

�x = �0 S(x) (3.9.7)

(provided that all the individuals in the cohort have the same mortality pattern,
described by S(x)). Thus, the �x ’s are proportional to the values the survival function
takes on integer ages x , and hence the life table can be interpreted as a tabulation of
the survival function.

The typical shape of the survival curve, namely the graph of the survival function,
is illustrated in Fig. 3.30. The analogy with the behavior of the �x ’s is apparent (see,
for example, Fig. 3.1), and is justified by relation (3.9.7).

We now assume that a life table is available, for example, thanks to a period
observation providing an estimate of the mortality rates, from which the �x ’s are
calculated, for x = 0, 1, 2, . . . , according to the procedure described in Sect. 3.2.3.
How to obtain the survival function for all real ages x?

Relation (3.9.7) suggests a practicable approach. First, for x = 0, 1, . . . , ω, set

S(x) = �x

�0
(3.9.8)

using the available life table. Then, for x = 0, 1, . . . , ω and 0 < t < 1, define

S(x + t) = (1 − t) S(x) + t S(x + 1) (3.9.9)

and assume S(x) = 0 for x > ω. Hence, a piece-wise linear function is obtained.
Graduation models other than the linear model used in (3.9.9) can be adopted.

Moreover, the values of S(x) can be fitted using some mathematical formula; how-
ever, the use of formulae for representing the age-continuous mortality pattern can
be better placed in the framework which we will describe in Sect. 3.9.3.

3.9.2 Other Related Functions

Other functions can be involved in age-continuous actuarial calculations. The most
important is the force of mortality (or mortality intensity), dealt with in Sect. 3.9.3.
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In the present section, we introduce the probability density function (pdf) and the
distribution function of the random variable Tx , x ≥ 0.

First, we focus on the random lifetime T0. Let f0(x) and F0(x) denote, respec-
tively, the pdf and the distribution function of T0. In particular, F0(x) expresses, by
definition, the probability of a newborn dying within x years. Hence,

F0(x) = P[T0 ≤ x] (3.9.10)

or, according to the usual notation,

F0(x) = x q0 (3.9.11)

Of course, we have
F0(x) = 1 − S(x) (3.9.12)

The following relation holds between the pdf f0(x) and the distribution function
F0(x):

F0(x) =
∫ x

0
f0(t) dt (3.9.13)

Usually, it is assumed that, for x > 0, the pdf f0(x) is a continuous function. Then,
we have

f0(x) = dF0(x)

dx
= −dS(x)

dx
(3.9.14)

The graph of the pdf f0(x) is frequently called the curve of deaths (see also
Sect. 3.2.1).

Figure3.31 illustrates the typical behavior of the pdf f0(x). Equation (3.9.14)
justifies the relation between the curve of deaths and the survival curve (see
Fig. 3.30). In particular, we note that the point of maximum downward slope in
the survival curve corresponds to the modal point (at adult-old ages) in the curve of
deaths.

Moving to the remaining lifetime at age x , Tx (x > 0), the following relations
link the distribution function and the pdf of Tx with the analogous functions relating
toT0:

Fx (t) = P[Tx ≤ t] = P[x < T0 ≤ x + t]
P[T0 > x] = F0(x + t) − F0(x)

S(x)
(3.9.15)

fx (t) = dFx (t)

dt
=

dF0(x + t)

dt
S(x)

= f0(x + t)

S(x)
(3.9.16)
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Fig. 3.31 The probability
density function

age x0

f0(x) 

From functions Fx (t) and fx (t) (and in particular, via (3.9.15) and (3.9.16), from
F0(t) and f0(t)), all of the probabilities involved in actuarial calculations can be
derived. For example,

t px = 1 − Fx (t) =
∫ +∞

t
fx (u) du = 1

S(x)

∫ +∞

t
f0(x + u) du (3.9.17)

3.9.3 The Force of Mortality

Consider the function μx , defined for all x ≥ 0 as follows:

μx = lim
t→0

t qx

t
(3.9.18)

The function μx is called the force of mortality (or the mortality intensity, or the
hazard function). It can be estimated, for example, for x = 0, 1, . . . , using period
mortality observations. Then, the estimated values can be graduated, in particular
using a mathematical mortality law. A number of laws have been proposed in actu-
arial and demographical literature, and are used in actuarial practice. Some important
examples are presented in Sect. 3.9.5.

Figure3.32 shows the typical behavior of the force of mortality. The relation
between its graph and the curve of deaths can be explained, thanks to relation (3.9.21).

An interesting relation links the survival function to the force of mortality. From
definition (3.9.18), using (3.9.4), we obtain

μx = lim
t→0

S(x) − S(x + t)

t S(x)
(3.9.19)

and then

μx =
−dS(x)

dx
S(x)

(3.9.20)
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Fig. 3.32 The force of
mortality

age x0

μx

and also (see (3.9.14))

μx = f0(x)

S(x)
(3.9.21)

Hence, once the survival function S(x) has been assigned, the force of mortality can
be derived. Thus, the force of mortality does not add any information concerning the
age pattern of mortality, provided that this has been described in terms of S(x).

The role of the force of mortality is to provide a tool for a fundamental state-
ment of assumptions about the behavior of individual mortality as a function of the
attained age. The Gompertz law for the force of mortality (see Sect. 3.9.5) consti-
tutes an excellent example. Indeed, when μx has been assigned, relation (3.9.20)
is a differential equation. Solving with respect to S(x) (with the obvious boundary
condition S(0) = 1) leads to

S(x) = e
−

∫ x

0
μt dt

(3.9.22)

Clearly, the possibility of finding a “closed” form for S(x) strictly depends on the
mathematical structure of μx .

Once the survival function has been obtained, then all survival and death prob-
abilities can be derived (see Eqs. (3.9.3) to (3.9.5), with x , h and k positive real
numbers). In particular, for example

qx = 1 − px = 1 − S(x + 1)

S(x)
= 1 − e

−
∫ x+1

x
μt dt

(3.9.23)

Remark 1 Functions of age x , like �x , qx , dx , etc. in the age-discrete context, and S(x), f0(x),
μx , etc. in the age-continuous context, constitute examples of biometric functions (other biometric
functions relate to disability, mortality of disabled people, and so on). In the age-discrete context,
they are also named life table functions.
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We recall that, once one of these functions has been assigned, the other functions (in the same
context) can be derived. For example, in age-discrete calculations from the �x values, we can derive
the functions qx , dx , etc.; in the age-continuous framework, from the force of mortality μx , the
survival function can be calculated and then all of the probabilities of interest.

Links between quantities used in an age-discrete context (like �x , dx , etc.) and quantities used in
age-continuous circumstances (like S(x), f0(x), etc.) may be of interest, especiallywhen comparing
and interpreting graphical representations of data provided by statistical experiences. The analogy
between �x and S(x) immediately emerges from (3.9.7). As regards dx (see Eq. (3.2.1)), the analogy
with the pdf f0(x) follows from the fact that the former is minus the first-order difference of the
function �x , while the latter is minus the derivative of the survival function S(x). Further, thanks to
relation (3.2.17), also the link between x |1q0 and f0(x) emerges.

Remark 2 We note that moving from the continuous context to the discrete one requires a rather
trivial step. An example is provided by the expression of qx , in particular for all integer ages x , in
terms of the force of mortality μt , as shown by Eq. (3.9.23).

Conversely, moving from the discrete context to the continuous one requires assumptions about
the behavior of functions of interest, in order to “fill in” the lack of knowledge. An example is
provided by the linear interpolation of the life table in order to obtain the survival function; see, for
example, the interpolation formula (3.9.9).

3.9.4 Markers

Single-figure indices, namely markers, summarizing the lifetime probability distri-
bution can be defined also in a time-continuous context.

The expected total lifetime (or life expectancy at the birth) is defined as follows:

ē0 = E[T0] =
∫ +∞

0
t f0(t) dt (3.9.24)

Integrating by parts, we can express ē0 in terms of the survival function:

ē0 =
∫ +∞

0
S(t) dt (3.9.25)

The definition can be extended to all (real) ages x . So, the expected remaining
lifetime at age x (or life expectancy at age x) is given by

ēx = E[Tx ] =
∫ +∞

0
t fx (t) dt = 1

S(x)

∫ +∞

0
S(x + t) dt (3.9.26)

For an individual age x , the expected age at death is clearly given by x + ēx .

It is possible to prove that the expected value
◦
ex (see Eqs. (3.4.7) to (3.4.9)) is an

approximation to the expected value ēx , obtained by applying the trapezoidal rule to
integrals in Eq. (3.9.26).
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Another location index is provided by the Lexis point which, in a time-continuous
context, is defined as the (old) age x (L) such that

f0(x (L)) = max
x

{ f0(x)} (3.9.27)

A traditional variability measure is provided by the variance of the random life-
time:

Var[T0] =
∫ +∞

0
(t − ē0)

2 f0(t) dt (3.9.28)

The interquartile range provides another variability measure. It is defined as
follows:

IQR[T0] = x (75) − x (25) (3.9.29)

where x (25) and x (75) are, respectively, the first quartile (the 25th percentile) and
the third quartile (the 75th percentile) of the probability distribution of T0, namely
the ages such that S(x (25)) = 0.75 and S(x (75)) = 0.25. Note that IQR decreases as
the lifetime distribution becomes less dispersed.

The 10th percentile of the probability distribution of T0, x (10), is usually called
the endurance; thus, S(x (10)) = 0.90.

The probability of a newborn dying before a given age x ′,

Fig. 3.33 Markers in a time-continuous context
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x ′q0 = 1 − S(x ′) =
∫ x ′

0
f0(t) dt (3.9.30)

for x ′ small (say 1, or 5), provides a measure of infant mortality.
Figure3.33 illustrates some markers of practical interest.

3.9.5 Parametric Models

Parametric models, i.e., mortality laws, have been proposed in relation to various
functions expressing the age pattern of mortality, in both the age-discrete and the
age-continuous context. An important example, namely the Heligman–Pollard laws
which focus on the odds and the one-year probabilities of death, has been presented
in Sect. 3.3.2. In the age-continuous context, a number of mortality laws refer to
the force of mortality, μx , although some of them have been originally proposed in
different terms (for example, in terms of the survival function S(x), or the probability
density function f0(x)).

The Gompertz law, proposed in 1825, is as follows:

μx = Bcx (3.9.31)

with B, c > 0. Sometimes, the following equivalent notation is used:

μx = αeβx (3.9.32)

It is interesting to look at the hypothesis underlying the Gompertz law. Assume
that, moving from age x to age x + Δx , the increment of the mortality intensity is
proportional to its initial value, μx , and to the length of the interval, Δx ; thus,

Δμx = βμxΔx + o(Δx) (3.9.33)

with β > 0. We note that, given Δx , the higher the value μx , the higher is the
increment Δμx ; hence, (3.9.33) expresses the aging process. Assumption (3.9.33)
leads to the differential equation:

dμx

dx
= βμx (3.9.34)

and finally to (3.9.32), with α > 0. The Gompertz law is used to represent the age
progression of mortality at the adult and old ages, namely the adult and senescent
mortality.

The (first) Makeham law, proposed in 1867, is a generalization of the Gompertz
law, namely

μx = A + Bcx (3.9.35)
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where the term A ≥ 0 (independent of age) represents non-senescent mortality, e.g.,
because of accidents. The following equivalent notation is also used:

μx = γ + αeβx (3.9.36)

Using (3.9.22), from (3.9.35), we obtain

S(x) = exp

(
−Ax − B

log c
(cx − 1)

)
(3.9.37)

In particular, setting A = 0, we find the survival function of the Gompertz law.
The second Makeham law, proposed in 1890, is as follows

μx = A + H x + Bcx (3.9.38)

and hence constitutes a further generalization of the Gompertz law.
The Thiele law, proposed in 1871, can represent the age pattern of mortality over

the whole life span (see Fig. 3.32):

μx = Ae−Bx + Ce−D(x−E)2 + FGx (3.9.39)

where all the parameters are positive real numbers. The first term decreases as the
age increases and represents the infant mortality. The second term, which has a
“Gaussian” shape, represents the mortality hump (mainly due to accidents) at young-
adult ages. Finally, the third term (which has the Gompertz structure) represents the
senescent mortality.

It is worth noting that the structure of the first Heligman–Pollard law (as well as
its aim, namely to represent the age pattern of mortality over the whole life span) is
analogous to the structure of Thiele’s law.

In 1932, Perks proposed two mortality laws. The first Perks law is as follows:

μx = αeβx + γ

δeβx + 1
(3.9.40)

Conversely, the second Perks law has the following more general structure:

μx = αeβx + γ

δeβx + εe−βx + 1
(3.9.41)

Perks’ laws,whosegraphs have a logistic shape, play an important role in representing
the mortality pattern at very old ages (say, beyond 90). Actually, recent statistical
observations show that the force of mortality is slowly increasing at very old ages,
approaching a rather flat shape. This fact leads to the rejection of the exponential
increase (implied by the previous models).
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3.9.6 A Time-Continuous Dynamic Context

In a time-continuous context, dynamic mortality can be expressed in terms of a force
ofmortalityμx (t)which depends on time t , and hence representing the instantaneous
mortality of an individual age x at time t .

The construction of the functionμx (t) calls for appropriate projection procedures.
The projected mortality intensity μx (t) allows us to determine all the functions
involved in actuarial calculations, as well as, for example the cohort life expectancy
at age x , ēx (t) (that is, the life expectancy of an individual age x at time t).

This topic is beyond the scope of the present textbook; the interested reader can
refer to the bibliographic suggestions provided in Sect. 3.11.

3.10 Stochastic Mortality

3.10.1 Number of People Alive in a Cohort

Assume that, at time t = 0, a “group” (for example a pension fund, or a portfolio
of life insurance contracts) consists of n0 initial individuals. Further, assume that all
the members of this group are aged x initially, and that no other individual will enter
the group in future years. Thus, the group is a cohort. Finally, assume that the only
cause of exit is the death.

The number of people alive at time t , t = 1, 2, . . . , is a random number, which
we denote with Nt . Any sequence of integers n1, n2, . . . , such that

n0 ≥ n1 ≥ n2 ≥ · · · (3.10.1)

is a possible outcome of the random sequence

N1, N2, . . . (3.10.2)

Of course, any single outcome of the random sequence (3.10.2) does not pro-
vide, by itself, significant information about the reasonable evolution of the cohort.
Conversely, the meaning of “reasonable” can be specified as soon as a probabilistic
structure describing the lifetimes of the cohort members has been assigned.

3.10.2 Deterministic Models versus Stochastic Models

We assume that the individuals in the cohort are analogous in respect of the age
pattern of mortality, and thus for all the individuals we assume the same life table
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(or survival function). Hence, the probability of being alive at time t is given, for any
member of the cohort, by t px = �x+t

�x
.

It follows that the expected number of individuals alive at time t , out of the initial
n0 members, is given by

E[Nt ] = n0 t px ; t = 1, 2, . . . (3.10.3)

It should be noted that, although formula (3.10.3) involves probabilities, themodel
built up so far is a deterministic model, as probabilities are only used to determine
expected values and the probabilities themselves are assumed to be known. A first
step toward stochastic models follows.

We assume that the random lifetimes of the individuals in the cohort are inde-
pendent. For any given t and for j = 1, 2, . . . , n0, we denote by E ( j)

t the event
“the member j is alive at time t .” Of course, P[E ( j)

t ] = t px for all j . From the
independence of the lifetimes, the independence of the events E ( j)

t , j = 1, 2, . . . , n0
follows. We note that Nt can be defined as the random number of true events out of
the n0 events defined above; hence, Nt has a binomial distribution, with parameters
n0, t px . Thus

P[Nt = k] =
(

n0

k

)
(t px )

k(1 − t px )
n0−k; k = 0, 1, . . . , n0 (3.10.4)

In particular, the variance of Nt is given by

Var[Nt ] = n0 t px (1 − t px ) (3.10.5)

Example 3.10.1 We consider a cohort of n0 individuals, all age x = 40 initially. We
assume that the age pattern of mortality is described by the first Heligman–Pollard
law, with the parameters specified in Example3.3.1.

Figures3.34 and 3.35 refer to a cohort initially consisting of n0 = 500 individuals.
The probability distributions of N5 and N10, respectively, are depicted. In particular,

Fig. 3.34 Probability
distribution of N5
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Fig. 3.35 Probability
distribution of N10
(n0 = 500)
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Fig. 3.36 Probability
distribution of N5
(n0 = 1 000)
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Fig. 3.37 Probability
distribution of N10
(n0 = 1 000)
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we have

E[N5] = 496.269; Var[N5] = 3.703; CV[N5] = 0.003878
E[N10] = 490.083; Var[N10] = 9.720; CV[N10] = 0.006362

In Figs. 3.36 and 3.37, the probability distributions of N5 and N10 are, respectively,
illustrated, referring to a cohort initially consisting of n0 = 1 000 individuals. In
particular, we have
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E[N5] = 992.538; Var[N5] = 7.406; CV[N5] = 0.002741;
E[N10] = 980.166; Var[N10] = 19.441; CV[N10] = 0.004498

The effect of the portfolio size on the variability of the results (namely, the pooling
effect) is evident: in particular, the relative variability, which is expressed by the
coefficient of variation (see Sect. 1.5.2), decreases, at any time, as the portfolio size
increases. The effect of the portfolio size also emerges if we compare the graphs in
Figs. 3.34 and 3.35; on one hand, to those in Figs. 3.36, and 3.37 on the other hand,
of course taking into account the different scales adopted for the axes. Note that, on
the contrary, for any given portfolio size, the variability (in both absolute and relative
terms) increases as the time increases. ❑

The probability distribution of Nt witnesses the presence of random fluctuations
in the number of survivors around its expected value E[Nt ]. As seen in Sect. 2.3.1,
random fluctuations are the consequence of the process risk, which, in the biometric
framework, constitutes one of the components of the mortality/longevity risk. Con-
versely, systematic deviations are the consequence of the uncertainty risk, which
constitutes another component of the mortality/longevity risk.

According to recent glossary standards, in the following, we will use the term
mortality risk to denote a mortality higher than that expected, when this generates
negative consequences (for example, for an insurer dealing with death benefits).
Conversely, the term longevity risk will denote a mortality lower than expected,
when this originates negative consequences (for example, for an insurer dealing with
life annuities). The expression mortality/longevity risk will be used to generically
denote risks arising from lifetimes. Note that the mortality and the longevity risk
may consist of random fluctuations as well as systematic deviations.

Remark Themortality and the longevity risks belong to the class of biometric risks, which include
all the risks related to human life conditions. Thus, besides mortality and longevity risks, also risks
arising from the behavior of disability, natality, and so on fall in the class of biometric risks.

3.10.3 Random Fluctuations in Mortality

Further insights into the process risk can be obtained looking at the random behavior
of the number of survivors in the cohort over time. As life insurance is, typically, a
medium long-term business, the features of this activity can be better perceived in a
dynamic perspective.

To this purpose,we can implement a simulation procedure, basedon the generation
of (pseudo-) random numbers. The procedure can be as follows:

1. simulate the random lifetime (i.e., the age at death) for eachmember of the cohort;
2. given the simulated values of the n0 lifetimes, calculate the numbers of individuals

alive at times 1, 2, . . . , namely the simulated outcome n1, n2, . . . of the random
sequence N1, N2, . . .;

3. repeat steps 1 and 2, for a given number s of times.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Fig. 3.38 Simulated number
of survivors: random
fluctuations
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The output of this procedure is a (simulated) sample consisting of s outcomes, or
paths, of the random sequence N1, N2, . . .

Example 3.10.2 We consider a cohort of n0 = 500 individuals, all age x = 40
initially. As in Example3.10.1, we assume the age pattern of mortality described
by the first Heligman–Pollard law, with the parameters specified in Example3.3.1.
Figure3.38 illustrates 50 paths of the random sequence

N1, N2, . . . , N10

namely limited to the first 10 years. The dashed line represents the sequence of
expected values

E[N1],E[N2], . . . ,E[N10]

around which the simulated paths develop. ❑

For any given time t , information about the distribution of the random number Nt

can be obtained looking at the simulated outcomes of Nt , namely by constructing
the statistical distribution of Nt .

However, it is worth noting that, when just one cohort consisting of individu-
als with the same age pattern of mortality is involved, probability distributions of
the random numbers of survivors can be found via analytical formulae, as seen in
Sect. 3.10.2. Further, approximations to the probability distribution of the numbers
of people dying in the various years can be adopted, when several initial ages and
thus several mortality patterns are involved.

Conversely, simulation procedures are useful, even when the structure by age
of the cohort is very simple, when we have to analyze the behavior of quantities
depending on the random numbers of people alive or dying. Important examples are
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given by the cash flows in life insurance portfolios. So the simulation procedure we
have described should be meant as the starting point for building up more complex
models involving, for example, incomes and outflows. Examples will be provided in
the following chapters.

3.10.4 Systematic Deviations in Mortality

In order to represent the age pattern of mortality in a given group (namely, a life
insurance portfolio or a pension plan), we have to choose a life table or a mortality
law. However, the mortality actually experienced by the group in future years may
“systematically” differ from the one we have assumed. This may occur for various
reasons. For example,

• because of poor past experience, we have chosen a life table relying on mortality
experienced in other populations;

• the future trend in mortality differs from the forecasted one (expressed by a pro-
jected table).

So, whatever hypothesis has been assumed, the future level and trend in mortality
are random. Then, an uncertainty risk arises, namely a risk due to the uncertainty in
the representation of the mortality scenario. Hence, systematic deviations from the
expected values can occur, which combine with ordinary random fluctuations. See
Sect. 2.3.11 for an introduction to this topic.

Example 3.10.3 We refer to the cohort already considered in Example3.10.2. First,
we assume the age pattern of mortality described by the Heligman–Pollard law with
the parameters adopted in Example3.10.2. Then, we suppose that the futuremortality
follows the Heligman–Pollard law in which parameters G and H are replaced by

Ḡ = 0.000022875; H̄ = 1.0878

We denote byE[Nt |G, H ] andE[Nt |Ḡ, H̄ ], t = 1, 2, . . . , the expected values based
on the first and the second assumption, respectively.

Figure3.39 illustrates 50 paths of the random sequence

N1, N2, . . . , N10

(i.e., limited to the first 10 years), simulated according to the new assumption about
the mortality. The dashed line represents the expected values

E[N1|G, H ],E[N2|G, H ], . . . ,E[N10|G, H ]

http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Fig. 3.39 Simulated number
of survivors: systematic
deviations (and random
fluctuations)
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whereas the dotted line represents the expected values

E[N1|Ḡ, H̄ ],E[N2|Ḡ, H̄ ], . . . ,E[N10|Ḡ, H̄ ]

around which the simulated paths develop.
The process risk causes the random fluctuations around the E[Nt |Ḡ, H̄ ]’s, while

the uncertainty risk originates the systematic deviations from the E[Nt |G, H ]’s. ❑

3.10.5 The Impact of Mortality/Longevity Risk on Life
Insurance

The impact of mortality/longevity risk on the results of a life insurance portfolio
depends on the features of the insurance products involved.

For example, an actual mortality lower than anticipated leads to insurer’s profits
when just benefits in the case of death are concerned. This can be originated either
by random fluctuations in mortality, or by an overestimation of the probabilities of
death. On the contrary, a mortality higher than expected may cause insurer’s losses.
Thus, the term mortality risk (see Sect. 3.10.2) expresses a downside risk for the
insurer providing death benefits.

Conversely, when a life annuity portfolio is involved, an actual mortality lower
than anticipated causes losses as only benefits in the case of survival are concerned.
Heavy negative results can be the consequence of an overestimation of the proba-
bilities of death, and hence an underestimation of the probabilities of survival; in
particular, this can be caused by a mortality trend leading to unanticipated mortality
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improvements. The term longevity risk is then used to express a downside risk for
the insurer providing benefits in case of survival, e.g., life annuities.

3.11 References and Suggestions for Further Reading

A number of textbooks of actuarial mathematics deal with life tables and mortality
models, in both an age-discrete and an age-continuous context. The reader can refer
for example to Bowers et al. (1997), Cunningham et al. (2008), Dickson et al. (2013),
Gerber (1995), Gupta and Varga (2002), Norberg (2002), Promislow (2006), and
Rotar (2007).

The textbook by Benjamin and Pollard (1993) is particularly devoted to mortal-
ity analysis, graduation methods, and mortality laws. For risk classification in life
insurance and the numerical rating system in particular, the reader should refer to
Cummins et al. (1983).

The reader interested in various perspectives on forecasting mortality can consult
Tabeau et al. (2001). The textbook by Pitacco et al. (2009) is specifically devoted to
mortality projections and the impact of future mortality trends on the costs of life
annuities.

Historical aspects, also concerning the construction of life tables and mortality
modeling in general, are dealt with by Haberman (1996).

Mortality data can be found on a number of websites. As regards population
mortality, we cite the following databases.

• The Human Mortality Database (HMD) is maintained by the Department of
Demography at the University of California, Berkeley (USA), and theMax Planck
Institute for Demographic Research, Rostock (Germany). It provides information
about mortality for 37 countries, based on official observations. HMD is available
at www.mortality.org or www.humanmortality.de.

• The Human Life-Table Database (HLD) provides national life tables published
officially, as well as non-official tables produced by researchers. HLD includes
countries not included in HMD, because of lack of official sources. Three sci-
entific institutions are jointly developing the HLD: the Max Planck Institute for
Demographic Research, Rostock (Germany), the Department of Demography at
the University of California, Berkeley (USA), and the Institut National d’Études
Démographiques, Paris (France). HLD is available at www.lifetable.de.

• The database maintained by the World Health Organization (WHO) provides data
for 130 countries, based on civil registration systems. Mortality data sub-divided
by causes of death are provided. WHO is available at www.who.int/en.

Mortality data related to insurance markets can be found on several websites. We
cite the following ones.

• The American Academy of Actuaries provides, in particular mortality tables
constructed by the Commissioners Standard Ordinary (CSO) Task Force. See
http://www.actuary.org/content/cso-task-force-report.

www.mortality.org
www.humanmortality.de
www.lifetable.de
www.who.int/en
http://www.actuary.org/content/cso-task-force-report
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• A very extensive collection of life tables is provided by the Society of Actuaries.
The database is available at http://mort.soa.org/.

• Mortality data related to the United Kingdom insurance and pension market are
provided by Continuous Mortality Investigation (CMI) Library, of the Institute
and Faculty of Actuaries. The database, together with publications describing data
collection and graduation procedures, is available at
http://www.actuaries.org.uk/research-and-resources/pages/continuous-mortality-
investigation.

The reader interested in the worldwide study of mortality, and in particular mortality
impacts on insurance, should consult the webpages of the Mortality Working Group
of the International Actuarial Association. see: http://www.actuaries.org/index.cfm?
lang=EN&DSP=CTTEES_TFM&ACT=INDEX.

http://mort.soa.org/
http://www.actuaries.org.uk/research-and-resources/pages/continuous-mortality-investigation
http://www.actuaries.org.uk/research-and-resources/pages/continuous-mortality-investigation
http://www.actuaries.org/index.cfm?lang=EN&DSP=CTTEES_TFM&ACT=INDEX
http://www.actuaries.org/index.cfm?lang=EN&DSP=CTTEES_TFM&ACT=INDEX


Chapter 4
Life Insurance: Pricing

4.1 Life Insurance Products

A short description of the main features of life insurance products is provided in
this section, which mainly aims at paving the way to premium calculation and other
quantitative assessments.

4.1.1 General Aspects

The object of a life insurance contract is to pay benefits depending on events concern-
ing the lifetime of one or more individuals. The amount of benefits can be quantified
in various ways. The following arrangements are of practical interest.

1. Amount of benefits stated at policy issue (namely, fixed benefits). In this case, we
can have

a. benefit with a constant amount;
b. benefit with an amount varying according to a stated rule (e.g., exponentially

increasing, arithmetically decreasing, and so on).

2. Initial amount of benefits stated at policy issue, then varying because of some
linking mechanism. Various linking models have been proposed and implemented;
in particular, we find

a. inflation-linked benefits;
b. unit-linked benefits (namely, linked to the value of the unit of an investment

fund);
c. increasing benefits via profit participation, for example,

i. bonus mechanisms (adopted in the UK);
ii. revaluation mechanisms (adopted in continental Europe).

© Springer International Publishing Switzerland 2015
A. Olivieri and E. Pitacco, Introduction to Insurance Mathematics,
EAA Series, DOI 10.1007/978-3-319-21377-4_4
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Insurance products with benefits of type 1 are dealt with in this chapter, whereas
benefits of type 2 will be described in Chap. 7.

Besides the insurer, the parties involved in an insurance contract are

• the insured (or the insureds), whose lifetime determines the payment of benefits;
• the contractor (or policyholder), who makes the contract and pays the premium(s);
• the beneficiary, who receives the benefits.

Two, or even three, of the parties above mentioned can coincide, depending on the
type of benefits provided by the insurance contract. In what follows, we will disregard
insurance products involving more than one individual as the insured party.

The following categories of life insurance products can be singled out.

1. Insurance products providing benefit in the case of survival.

• Their aim is to provide the beneficiary (who can coincide with the contractor
and the insured) with deferred amounts;

• the benefit is either a lump sum or an annuity;
• typical products are the pure endowment and the life annuities.

2. Insurance products providing benefit in the case of death.

• These products aim to cover the death risk and the related financial conse-
quences;

• the benefit is usually a lump sum (whereas annuities are less common) paid
to the beneficiary (while the contractor and the insured can coincide);

• the term insurance and the whole life insurance belong to this category.

3. Insurance products combining death and survival benefits.

• In these products, usually the benefit is certain, although paid at a random
time;

• the benefit is a lump sum; two distinct beneficiaries are usually involved, one
for the benefit in the case of death, and the other (who can coincide with the
insured and the contractor) for the benefit in the case of survival;

• a typical product is the endowment insurance.

Further categories could be added in order to enlarge the framework of life insur-
ance (also in accordance to legislation and market practice in many countries). For
example, products providing disability benefits constitute an important category,
as well as products in which benefits are linked to the insured’s health conditions.
Moreover, disability or health-related benefits can be packaged in insurance products
providing benefits related to the insured’s lifetime, thus constituting supplementary
(or rider) benefits. The main products belonging to the area of “health insurance”
are briefly described in Sect. 4.1.3.

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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Various premium arrangements, meeting the benefits, can be conceived for life
insurance products. In particular, we can have

1. a single premium, paid at the policy issue;
2. a sequence of periodic premiums, the first one paid at the policy issue, and the

following ones paid, for example, at the policy anniversaries.

Whatever the premium arrangement, at any time the policyholder should be in
a credit position (and, hence, the insurer in a debt position). We will focus on this
feature in Sect. 4.4.1.

Premiums, benefits, and expenses are the monetary ingredients of any life insur-
ance product. The related cash-flow streams develop throughout the policy dura-
tion. In order to achieve an equilibrium situation, premiums must meet benefits and
expenses. Hence, when benefits are stated and expenses assessed, premiums must be
consequently determined. Conversely, if the amount of premiums is chosen by the
policyholder, the benefits which can be financed by the premiums (net of expenses)
have to be calculated.

The relation which links premiums, on one hand, to benefits and expenses, on the
other hand, must rely on a premium calculation principle. A principle commonly
adopted in life insurance technique is the equivalence principle (see Sect. 1.7.4, and
Cases 4a and 4b in particular), according to which the expected present value (shortly,
the actuarial value) of benefits (and expenses) must be calculated.

In Sect. 4.2, we address the basics of expected present values in life insurance
covers. For brevity, we will use the term “discounting” to denote the calculation
of expected present values. In Sects. 4.3–4.4, we will focus on the application of
this principle to net premium calculation. Finally, in Sect. 4.5, we will deal with the
calculation of premiums also allowing for expenses.

4.1.2 Alterations of a Life Insurance Contract

The “natural” conclusion of a life insurance contract occurs either at the maturity
of the contract itself (and with the payment of the survival benefit, if any) or at the
insured’s death (and with the payment of the death benefit, if any).

Nevertheless, according to usual policy conditions, the policyholder has the right
to alter some contract features. The following alterations are of practical interest:

• early termination;
• conversion.

In general, any alteration is determined by the exercise of an insured’s option, and
implies a change in future cash-flow streams (premiums, benefits, expenses).

The early termination of an insurance contract usually occurs because of cessation
of the payment of periodic premiums. If the insurance contract provides a benefit
certain, in the case of early termination a cash amount, called the surrender value, is
paid to the policyholder. The surrender value is linked to the policyholder’s credit,
as we will see in Sect. 5.7.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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As regards products only providing a benefit in the case of survival at maturity,
the cessation of premium payments leads to a reduction of the sum insured, rather
than a cash payment. This restriction to the possibility of surrendering clearly aims
at reducing the risk of adverse selection in policyholders’ choices.

Further, no surrender (and hence no cash payment) takes place when the policy-
holder’s credit is very small. This happens in the first policy years (the first and the
second, in particular) of a large range of insurance products with periodic premiums,
as well as throughout the whole duration of short-term insurances just providing a
death benefit. In all these cases, the cessation of premium payment simply leads to
the lapse of the contract.

The policyholder’s credit can be used to help finance a conversion of an insurance
policy, that is, a change in some elements of the policy itself. For example, an increase
in the sum insured can be financed by both the policyholder’s credit and future
increased premiums.

Another example of conversion is given by the transformation of an insurance
contract into a paid-up insurance contract, namely one for which no further premium
payments are required. The sum insured is of course reduced, and its amount is
determined by accounting for the policyholder’s credit, as we will see in Sect. 5.7.

4.1.3 Insurances of the Person

Life insurance belongs to the area of insurances of the person, where we find (see
Fig. 4.1)

• life insurance (in a strict sense) and life annuities, i.e., products which provide
benefits depending on survival, and death only, i.e., on the insured’s lifetime;

• health insurance, which provides benefits depending on the health status and related
financial consequences (and depending on the lifetime as well);

• other insurances of the person, whose benefits are due depending on events such
as marriage, birth of a child, education and professional training of children, etc.

The shaded boxes in Fig. 4.1 represent insurance products commonly grouped under
the label protection.

Products belonging to the life insurance and life annuity area have been introduced
in Sect. 4.1.1. In what follows, we briefly describe the main products belonging to
the health insurance area.

Accident insurance covers a range of risks which may be caused by an accident
(in particular, but not only, the risks of permanent disability and death). Various
types of benefits can be included in the policy. A benefit frequently included consists
of a lump sum paid in the case of permanent disability; the benefit amount is then
determined as a function of the sum assured and the severity of the injury (i.e., the
degree of disability).

Sickness insurance policies include medical expense reimbursement (that is, reim-
bursement, usually partial, of costs related to sickness or childbirth), and possibly

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Fig. 4.1 Insurances of the person: basic products

hospitalization benefits (which consist of periodic payments during hospitalization
periods, whose amounts are not related to actual expenses), as well as fixed-amount
benefits in the event of temporary or permanent disability.

The term disability insurance denotes various types of covers, providing benefits
in case of temporary or permanent disability. In particular, income protection policies
provide a periodic (usually weekly or monthly) income to an individual if he/she is
prevented from working, and hence from getting his/her usual income, by sickness
or injury. In the case of permanent disability, the benefit can consist of a lump sum
instead of a sequence of periodic amounts.

Long-term care insurance (LTCI) provides the insured with financial support,
while he/she needs nursing and/or medical care because of chronic (or long-lasting)
conditions or ailments. Usually, annuity benefits are provided.

Critical illness insurance, or Dread disease insurance, has a very limited exten-
sion of coverage, which is defined via listing (rather than via exclusions). Diseases
commonly covered are heart attack, cancer, stroke, and coronary artery diseases
requiring surgery. The benefit is a fixed lump sum. A critical illness cover frequently
constitutes a rider benefit to a basic life policy including death benefit (typically a
term insurance, or an endowment insurance) instead of being a stand-alone cover.

Health insurance products are beyond the scope of this book. We just point out
that, from a technical perspective, pricing and reserving for health insurance products
rely, to a large extent, on a mixture of non-life insurance and life insurance actuarial
methods. Non-life technical features can be recognized when claim frequency and
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claim severity are involved, e.g., in sickness insurance providing medical expense
reimbursement. Conversely, life insurance technical features can be found in all health
insurance multi-year policies, which require mortality assumptions (and hence the
use of a life table) as well as financial assumptions (and then the adoption of an
interest rate for discounting).

4.2 Discounting Cash flows

Each life insurance contract originates cash flows. In particular, we will denote as
cash-inflow stream any sequence of amounts cashed by the insurer, and cash-outflow
stream any sequence of amounts paid by the insurer.

In what follows, we focus on discounting cash inflows and outflows.

4.2.1 Premiums, Benefits, Expenses

The cash inflow originated by an insurance contract consists of a sequence of pre-
miums. In particular, it can reduce to a single premium, cashed at the policy issue.

The cash outflows, namely the amounts paid by the insurer, consist of

1. the benefits,
2. the expenses.

Most of the items of the cash-flow streams are deferred (that is, cashed or paid by
the insurer after the policy issue), and random, as they depend on the random lifetime
of the insured. Thus, the amounts which will be actually cashed and paid depend on
the outcome of the lifetime.

Example 4.2.1 Figure 4.2 shows possible cash-flow streams in a life insurance con-
tract.

• Benefits are defined as follows:

– the amount Ch, h = 1, 2, . . . , 5, is paid at time h if the insured dies between
time h − 1 and h; thus, the Ch’s are death benefits; in particular, we can have
Ch = C, for h = 1, 2, . . . , 5, that is, a flat benefit profile;

– the amount S is paid at time 5 (that is, at maturity), if the insured is alive at that
time; thus, S is a survival benefit.

• The expense EX0 is paid at the policy issue, i.e., at time t = 0.
• Premiums P0, P1, P2 are cashed at time t = 0, 1, 2, respectively; however, the

second and the third one are cashed provided that the insured is alive at time t = 1
and t = 2, respectively.
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Fig. 4.3 Examples of actual outcomes of cash inflows and outflows

Note that only the premium P0 and the expense EX0 are immediate and hence certain.
Figure 4.3 illustrates the actual outcomes of the cash flows, in the case of death

in the second year (panel (a)), and in the case of survival at maturity (panel (b)).
Clearly, all missing items (compared to those in Fig. 4.2) do not belong to the actual
cash flows. ❑

In what follows, we first focus on outflows originated by benefits, namely disre-
garding expenses. We denote the time of policy issue as time 0, and assume the year
as the time unit.

4.2.2 A Lump Sum Benefit in the Case of Death

Assume that the amount C will be paid at time h to the beneficiaries if the insured
dies between time h − 1 and h, i.e., during the hth policy year (where h is given).

We denote with Y the random present value (at time 0) of this benefit. We assume
that x is the insured’s age at policy issue, and denote with Kx his/her curtate remaining
lifetime (see Sect. 3.2.7). Hence,

Y =
{

C (1 + i)−h if Kx = h − 1

0 otherwise
(4.2.1)

where i is the interest rate used for discounting.

http://dx.doi.org/10.1007/978-3-319-21377-4_3
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Further, we denote with h−1|1qx the probability of dying in year hth (see
Sects. 3.2.5 and 3.2.6, and formula (3.2.16) in particular). Then, the expected present
value is given by

E[Y ] = C (1 + i)−h
h−1|1qx (4.2.2)

4.2.3 A Lump Sum Benefit in the Case of Survival

Assume that the amount S will be paid at time m (a stated time) to the beneficiaries
(the insured in particular) if the insured is alive at that time.

We still denote with Y the random present value (at time 0) of this benefit. Hence,

Y =
{

S (1 + i)−m if Kx ≥ m

0 otherwise
(4.2.3)

Further, we denote with mpx the probability of being alive at time m (see Sect. 3.2.5,
and formulae (3.2.9) and (3.2.10) in particular). Then, the expected present value of
the benefit is given by

E[Y ] = S (1 + i)−m
mpx (4.2.4)

4.2.4 Combining Benefits

Formulae (4.2.1) and (4.2.2), as regards benefits in the case of death, and formulae
(4.2.3) and (4.2.4), as regards benefits in the case of survival, constitute the building
blocks for more complex structures expressing random present values and expected
present values. We note that expected present values can be easily derived, thanks to
the linearity of the expectation.

For example, assume that

• the amount Ch will be paid at time h to the beneficiaries if the insured dies between
time h − 1 and h, h ≤ m, where m denotes the policy term;

• the amount S will be paid at time m to the beneficiaries (the insured in particular)
if the insured is alive at that time.

Note that this benefit structure has been considered in Example 4.2.1, with m = 5.
Further, setting S = 0 and Ch = C for h = 1, 2, . . . , m, we find the insurance product
illustrated as Case 4b in Sect. 1.7.4.

http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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The random present value of the benefits is given by

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 (1 + i)−1 if Kx = 0

C2 (1 + i)−2 if Kx = 1

. . . . . .

Cm (1 + i)−m if Kx = m − 1

S (1 + i)−m if Kx ≥ m

(4.2.5)

Then, the expected present value is as follows:

E[Y ] =
m∑

h=1

Ch (1 + i)−h
h−1|1qx + S (1 + i)−m

mpx (4.2.6)

By combining survival benefits, we can define the cash-flow streams originated by
life annuities. Assume, in particular, that the amount S is paid to the insured (namely,
the “annuitant”), at times 1, 2, . . . , while he/she is alive. Then, we have

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Kx = 0

S (1 + i)−1 if Kx = 1

S (1 + i)−1 + S (1 + i)−2 if Kx = 2

S (1 + i)−1 + S (1 + i)−2 + S (1 + i)−3 if Kx = 3

. . . . . .

(4.2.7)

or, according to the notation commonly adopted in financial mathematics:

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Kx = 0

S a1� if Kx = 1

S a2� if Kx = 2

S a3� if Kx = 3

. . . . . .

(4.2.8)

In compact terms, (4.2.8) can be written as follows:

Y = S aKx� (4.2.9)

The expected present value is then given by

E[Y ] = E[S aKx�] = S
ω−x∑
h=1

ah� h|1qx (4.2.10)

where ω denotes the maximum attainable age.
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An alternative expression for the expected present value of a life annuity can be
found, thanks to the identity

kpx =
ω−x∑
h=k

h|1qx (4.2.11)

that holds for any integer k. After a little algebra, we obtain the following expression:

E[Y ] = S (1 + i)−1
1px + S (1 + i)−2

2px + S (1 + i)−3
3px + . . . (4.2.12)

which has an easy direct interpretation.

Remark 1 Formulae (4.2.10) and (4.2.12) reflect, in a modern form, calculation procedures
proposed in the second half of the seventeenth century. Indeed, formula (4.2.10) generalizes the
calculation procedure proposed in 1671 by the Dutch prime minister Jan de Witt, while formula
(4.2.12) was proposed in 1693 by Edmond Halley, the famous astronomer. It is worth noting that
formula (4.2.12) is computationally more straightforward, whereas formula (4.2.10) is much more
interesting for further developments. In fact, as (4.2.10) directly refers to the random number Kx , de
Witt’s method can be easily adopted to calculate higher moments, e.g., the variance of the random
present value, aKx�, of a life annuity.

Remark 2 The two insurance products described in the present section have been constructed by
“combining” two building blocks, namely the one-year cover providing a lump sum in the case of
death (see Sect. 4.2.2) and the m-year cover providing a lump sum in the case of survival at time
m (see Sect. 4.2.3). In particular, the expected present values of the benefits provided by the two
insurance products result in linear combinations of the expected present values of the benefits paid
by the building blocks; see formulae (4.2.6) and (4.2.12). Of course, this is a straight consequence of
the linearity of the expectation as an operator. The equivalence principle, which plays a prominent
role in the calculation of premiums for life insurance products (as we will see in Sects. 4.3–4.5),
only relies on expected values, and hence excluding risk measures, and then benefits of the linearity
of the expectation operator.

4.2.5 Actuarial Values: Basic Terminology and Notation

In the previous sections, we have shown that, for any given set of benefits, a random
present value, Y , can be defined, and this value is a function of the remaining random
lifetime of the insured, Kx . The expected value of Y is the actuarial value of the
benefits. As seen above, its calculation consists in discounting the benefits, and
relies on a life table and the interest rate i, which constitute the technical basis.

We now define the terminology used to denote cash flows related to life insurance
and life annuity contracts, and the notation for the relevant actuarial values. Although
reference is mainly to benefits, some of the following actuarial values are of interest
also when evaluating inflows arising from periodic premiums, as well as outflows
related to expenses.
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Remark The notation defined in this section is commonly used in the actuarial practice, especially
in continental Europe. Nonetheless, it differs, to some extent, from the “standard” notation proposed
at an international level. The interested reader can refer to some textbooks quoted in Sect. 4.6.

The actuarial value of 1 monetary unit payable at time m if the insured (currently
age x) is alive at that time, is given by

mEx = (1 + i)−m
mpx (4.2.13)

(see (4.2.4)). This benefit is provided by the pure endowment insurance.
Consider a sequence of unitary amounts, payable at the beginning of each year as

long as the insured is alive. The benefit is provided by the whole life annuity (paid
in advance). Its actuarial value is given by

äx =
ω−x∑
h=0

hEx (4.2.14)

If the annual amounts are payable for at most m years, we have the temporary life
annuity (paid in advance), whose actuarial value is

äx:m� =
m−1∑
h=0

hEx (4.2.15)

Conversely, if the annual amounts are payable as long as the insured is alive,
but starting from time r, we have the deferred life annuity (paid in advance). The
actuarial value is given by

r|äx =
ω−x∑
h=r

hEx = äx − äx:r� (4.2.16)

Combining the restrictions defined above, we have

r|äx:m� = äx:r+m� − äx:r� (4.2.17)

Formulae similar to the previous ones express the actuarial values of sequences of
unitary amounts, payable at the end of each year, namely the values of life annuities
paid in arrears. We have

ax =
ω−x∑
h=1

hEx = äx − 1 (4.2.18)

ax:m� =
m∑

h=1

hEx (4.2.19)
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r|ax =
ω−x∑

h=r+1

hEx = ax − ax:r� (4.2.20)

r|ax:m� = ax:r+m� − ax:r� (4.2.21)

The actuarial value of a unitary amount payable at time h if the insured dies
between time h and h + 1 is given by

h|1Ax = (1 + i)−(h+1)
h|1qx (4.2.22)

(see (4.2.2)).
The actuarial value of a unitary amount payable at the end of the year of death, if

this occurs within m years, is as follows:

mAx =
m−1∑
h=0

h|1Ax (4.2.23)

This benefit is provided by the term insurance (or temporary insurance).
Conversely, if the amount is payable whenever the death occurs, we have the

whole life insurance; its actuarial value is given by

Ax =
ω−x∑
h=0

h|1Ax (4.2.24)

Death benefit can be restricted to time intervals which start after a given period r
(the deferred period) has been elapsed since policy issue. Then, we have the following
actuarial values:

r|mAx =
r+m−1∑

h=r

h|1Ax (4.2.25)

r|Ax =
ω−x∑
h=r

h|1Ax (4.2.26)

Of course,
Ax = rAx + r|Ax (4.2.27)

Combining the benefits provided by the pure endowment and the term insurance
(whose actuarial values are given by formulae (4.2.13) and (4.2.23), respectively), we
obtain the benefit provided by the endowment insurance. Its actuarial value is then:

Ax,m� = mEx + mAx (4.2.28)
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We note that the resulting benefit consists in paying the unitary amount at the end of
the year of death, if this occurs before m, or at time m at the latest.

4.2.6 Actuarial Values for Varying Benefits

In the previous section, we have defined the actuarial values for life annuities and life
insurance products providing constant benefits throughout the whole policy duration.
Examples are given by a whole life annuity which pays a lifelong annual benefit of 1
monetary unit, and a term insurance providing a unitary benefit whenever the insured
dies, prior to the policy term.

Actuarial values can also be defined for products which provide varying benefits,
i.e., benefits whose amount varies throughout time according to a stated rule (see
arrangement 1.b in Sect. 4.1.1). In this section, we address some examples, referring
to arithmetically increasing benefits.

Consider an arithmetically increasing whole life annuity which pays (in advance)
the following annual benefits: 1, 2, 3, . . . The related actuarial value, denoted by
(Iä)x , is given by

(Iä)x =
ω−x∑
h=0

(h + 1) hEx (4.2.29)

It can be easily proved that

(Iä)x =
ω−x∑
h=0

h|äx (4.2.30)

Similarly, for an arithmetically increasing benefit paid in arrears, we have

(Ia)x =
ω−x∑
h=1

h hEx =
ω−x∑
h=1

h−1|ax (4.2.31)

In the case of a deferred period of r years, we have

r|(Iä)x =
ω−x∑
h=r

(h − r + 1) hEx =
ω−x∑
h=r

h|äx (4.2.32)

r|(Ia)x =
ω−x∑

h=r+1

(h − r) hEx =
ω−x∑

h=r+1

h−1|ax (4.2.33)

for an annuity paid in advance or in arrears, respectively.
Refer to an arithmetically increasing whole life insurance which provides the

benefit 1 in case of death in the first year, 2 in the case of death in the second year,
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and so on. The related actuarial value, denoted by (IA)x , is given by the following
expression:

(IA)x =
ω−x∑
h=0

(h + 1) h|1Ax =
ω−x∑
h=0

h|Ax (4.2.34)

Consider an arithmetically increasing term insurance which provides the benefit
1 in case of death in the first year, 2 in the case of death in the second year, …, m in
case of death in the mth year; we have

m(IA)x =
m−1∑
h=0

(h + 1) h|1Ax =
m−1∑
h=0

h|m−hAx (4.2.35)

Finally, in the case of a deferred period of r years, we find

r|m(IA)x =
r+m−1∑

h=r

(h + 1 − r) h|1Ax =
r+m−1∑

h=r

h|r+m−hAx (4.2.36)

4.2.7 Actuarial Values with Zero Interest Rate

When a zero interest is assumed, namely no time value of money is accounted for,
actuarial values only depend on probabilities assigned to the possible outcomes of
the insured’s lifetime. For example,

mAx =
m−1∑
h=0

h|1qx = mqx (4.2.37)

mEx = mpx (4.2.38)

On the contrary, when the payment of the benefit is certain, whatever the insured’s
lifetime may be, probabilities do not affect the actuarial value. This is the case, for
example, of the whole life insurance and the endowment insurance. Indeed, we have

Ax =
ω−x∑
h=0

h|1qx (4.2.39)

Ax,m� =
m−1∑
h=0

h|1qx + mpx (4.2.40)

We then find
Ax = Ax,m� = 1 (4.2.41)
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A further interesting result concerns the relation between the life expectancy at
age x (see Sect. 3.4.1) and the actuarial value of a life annuity. From (4.2.18) and
(4.2.13), if i = 0 we have

ax =
ω−x∑
h=1

hpx (4.2.42)

and hence, via (3.4.9), we find
◦
ex = ax + 1

2 (4.2.43)

4.2.8 Actuarial Values: An Approximation

Actuarial values (4.2.22)–(4.2.28) can be “adjusted” to (approximately) allow for
benefit payment at the time of death, instead of the end of the year of death. Assuming
that the probability distribution of the time of death is uniform over each year, we
first define

h|1Āx = (1 + i)
−

(
h+ 1

2

)
h|1qx = h|1Ax (1 + i)

1
2 (4.2.44)

Then, we find

mĀx = mAx (1 + i)
1
2 (4.2.45)

Āx = Ax (1 + i)
1
2 (4.2.46)

Āx,m� = mEx + mĀx (4.2.47)

Of course, if i = 0, we trivially find mĀx = mAx , Āx = Ax , and Āx,m� = Ax,m�.
The same adjustment can be applied to actuarial values (4.2.34)–(4.2.36).

4.2.9 Actuarial Values: Inequalities

For any pair x, m, and any technical basis, the following inequalities hold, whatever
the life table and the interest rate i adopted:

mAx ≤ Ax ≤ Ax,m� (4.2.48)

mEx ≤ (1 + i)−m ≤ Ax,m� (4.2.49)

Inequalities (4.2.48) and (4.2.49) can formally be proved. We just note what
follows.

http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
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• The inequality mAx ≤ Ax holds because the benefit provided by the term insurance
is just a “part” of that provided by the whole life insurance (see (4.2.27)). In
practice, we have mAx < Ax , if x and m are not huge numbers.

• The inequality Ax ≤ Ax,m� holds because the endowment insurance pays the benefit
not later than the whole life insurance (see the comment after formula (4.2.28)). In
particular, we have Ax = Ax,m� = 1 if i = 0 (see Eq. (4.2.41)); in fact, the benefit
is paid certainly in both the insurance products, only the time of payment being
random.

• The inequality mEx ≤ (1 + i)−m is obvious, as the pure endowment benefit is paid
only if the insured is alive at time m (and, in practice, we have mEx < (1 + i)−m).

• As the endowment insurance pays the benefit at time m at the latest, the inequality
(1 + i)−m ≤ Ax,m� follows.

We further note that, for some couples of actuarial values, no relation can in
general be established. Consider, for example, the values Ax and (1 + i)−m. For
i = 0, we have Ax = (1 + i)−m = 1. Conversely, for i > 0, let us assume x = 80
and m = 35; likely, we will find

A80 > (1 + i)−35

as, with high probability, the payment of the sum provided by the whole life insurance
will occur before 35 years from the policy issue. On the contrary, assuming x = 30
and m = 5, we will likely find

A30 < (1 + i)−5

4.2.10 The Actuarial Discount Factor

Consider, for example, the actuarial value defined by (4.2.26), namely

r|Ax =
ω−x∑
h=r

h|1Ax =
ω−x∑
h=r

(1 + i)−(h+1)
h|1qx (4.2.50)

Using relation (3.2.16), we can write

r|Ax = (1 + i)−r
rpx

ω−x−r∑
h=0

(1 + i)−(h+1)
h|1qx+r (4.2.51)

and finally
r|Ax = rEx Ax+r (4.2.52)

http://dx.doi.org/10.1007/978-3-319-21377-4_3
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In Eq. (4.2.52), the actuarial value rEx plays the role of r-year actuarial discount
factor (at age x), thanks to which an actuarial value of deferred benefits (that is, r|Ax)
can be expressed in terms of an actuarial value of immediate benefits (Ax+r).

Note that, while rEx is the actuarial value at time 0 (age x) of 1 unit payable at

time r (age x + r) in the case of survival,
1

rEx
is the amount payable at time r whose

actuarial value at time 0 is 1 unit. Thus,
1

rEx
can be meant as the r-year actuarial

accumulation factor (at age x).
Relations similar to (4.2.52) are based on formula (3.2.11). In particular, we have

r+mEx = rEx mEx+r (4.2.53)

r|äx = rEx äx+r (4.2.54)

Remark Relations like (4.2.52)–(4.2.54) require, of course, that the same technical basis is
adopted in both the terms of the right-hand side. In particular, relation (4.2.54) relies on mortality
(and interest) assumption at age x, e.g., x = 40, while the total duration of the deferred annuity can
be greater than 50 years, say. Given the uncertainty in future mortality trends, such an assumption
is rather unrealistic.

4.2.11 Actuarial Values: Further Relations

Interesting relations can be found by comparing cash-flow streams and the related
actuarial values.

A perpetuity is a stream of perpetual payments. We now refer to a perpetuity
of annual payments of 1 monetary unit in advance. The present value, ä∞�, of a
perpetuity in advance is given, for i > 0, by

ä∞� = 1 + (1 + i)−1 + (1 + i)−2 + · · · = 1 + i

i
(4.2.55)

Denoting with d the discount rate (or rate of interest-in-advance), namely d = i

1 + i
,

we have

ä∞� = 1

d
(4.2.56)

Of course, we have äx < ä∞�. In particular, to obtain a perpetuity, we have to
add to the whole life annuity a deferred perpetuity, whose first payment is placed at
the end of the year of death of the annuitant. Recalling that the actuarial value (at
time 0) of a given amount C payable at the end of the year of death is C Ax , we find
that the actuarial value of the deferred perpetuity is ä∞� Ax . Hence,

ä∞� = äx + ä∞� Ax (4.2.57)

http://dx.doi.org/10.1007/978-3-319-21377-4_3
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Using (4.2.56), we obtain
1 = d äx + Ax (4.2.58)

Relation (4.2.58) can be interpreted as follows. A debt of 1 monetary unit (con-
tracted at time 0) is repaid with annual interests d in advance as long as the debtor
is alive and the final payment of 1 at the end of the year of his/her death. We note
that relation (4.2.58), which expresses a lifetime repayment, generalizes in terms of
expected values the well-known relation

1 = d äm� + (1 + i)−m (4.2.59)

which relates to an m-year repayment.
Interesting relations between actuarial values can be expressed as recursive for-

mulae, which can be useful in calculation procedures, but also suggest instructive
interpretations.

First, we consider the whole life insurance. From Eq. (4.2.27) with r = 1, we have

Ax = 1Ax + 1|Ax (4.2.60)

and, thanks to (4.2.52)
Ax = 1Ax + 1Ex Ax+1 (4.2.61)

In explicit terms,
Ax = (1 + i)−1

1qx + (1 + i)−1
1px Ax+1 (4.2.62)

Interpretation is as follows: the actuarial value at age x, Ax , is the expected value
of a random variable whose outcomes are the discounted unitary sum insured in the
case of death (hence, with probability 1qx), and the discounted actuarial value of
a whole life insurance from age x + 1 onward, in the case of survival at that age
(probability 1px).

As regards life annuities, we consider the following example. From (4.2.16) and
using (4.2.54), with r = 1, we obtain

äx = 1 + (1 + i)−1
1px äx+1 (4.2.63)

Interpretation is as follows: the actuarial value at age x, äx , includes the payment of 1
immediately due, and the discounted actuarial value of a life annuity from age x + 1
onward, in the case of survival at that age, thus with probability 1px .

4.2.12 Actuarial Values at Times Following the Policy Issue

Actuarial values have been sofar referred to time 0, i.e., the policy issue. Clearly, these
valuations are required for premium calculation, as we will see in the next sections.
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However, also valuations at (integer) times t following the policy issue, namely at
policy anniversaries, are of practical interest, for example when calculating reserves
(for basic ideas on reserving in life insurance, refer to Sect. 1.7.6). The time interval
between policy issue and a generic time t is called duration since initiation, or past
duration.

Actuarial values at time t rely on the assumption that the insured is alive at that
time. Hence, if the insured is age x at policy issue, his/her curtate remaining lifetime
is Kx+t , and probabilities referred to age x + t must be used.

For example, the actuarial value at time t of a m-year term insurance, with a
unitary sum insured, is given by

m−tAx+t =
m−t−1∑

h=0

h|1Ax+t =
m−t−1∑

h=0

(1 + i)−(h+1)
h|1qx+t (4.2.64)

The actuarial value at time t of a pure endowment with maturity at time m is
given by

m−tEx+t = (1 + i)−(m−t)
m−tpx+t (4.2.65)

As final example, the actuarial value at time t of a whole life annuity in advance is
given by

äx+t =
ω−x−t∑

h=0

hEx+t (4.2.66)

4.3 Single Premium

As noted in Sect. 4.2.1, the cash inflow originated by an insurance contract can, in
particular, reduce to a single premium, cashed by the insurer at the policy issue. We
start the discussion on premium calculation focussing on this particular case, yet of
practical interest.

After recalling the equivalence principle (see Sect. 1.7.4), we deal with single pre-
mium of insurance products providing benefits in the case of survival (Sects. 4.3.2 and
4.3.3), in the case of death (Sects. 4.3.4 and 4.3.5), and in both the cases (Sect. 4.3.6).

4.3.1 The Equivalence Principle

Refer to a generic life insurance contract, and denote with

• Y the random present value of the benefits;
• Π the single premium;
• Z the random present value of the insurer’s result (profit, or loss).

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Of course, we have
Z = Π − Y (4.3.1)

Assume the equivalence principle for the premium calculation. Hence, Π must
be such that

E[Z] = 0 (4.3.2)

and then
Π = E[Y ] (4.3.3)

As noted in Sect. 1.7.4, a safety loading should be added to the premium, in order to

1. provide the insurer with a positive expected result, namely a profit;
2. face possible adverse experience as regards

a. yield from investments,
b. insureds’ mortality.

In particular, the safety loading can be directly included into the premium, as is
common in life insurance. In this case, it is referred to as an implicit safety loading.
To this purpose, cash flows are discounted adopting an appropriate interest rate i′,
and an appropriate life table, namely probabilities of death q′ or survival p′, which
constitute the pricing basis, often denoted also as the first-order basis.

Remark We note that, unlike in Sect. 1.7.4, the expected present value E[Y ] must be meant as
calculated according to the first-order basis. More precisely, the random present value Y relies on
the interest rate i′, and the expected value is quantified by adopting probabilities q′ (or p′).

Clearly, the interest rate i′ should be lower than that expected as the yield from
investment, whereas the life table must be chosen looking at the type of benefit, as
we will see in the following sections.

In particular, the life tables we will adopt in the numerical examples are con-
structed by assuming that the age pattern of mortality follows the first Heligman–
Pollard law (see Sect. 3.3.2). Various alternative parameters are shown in Table 4.1,
while some corresponding markers can be found in Table 4.2.

The five life tables can be interpreted as follows. Table LT1 could be a population
table (see Sect. 3.2.4), e.g., representing the mortality in a whole national population,
constructed as a period table. Mortality in LT1 could be also meant as slightly reduced

Table 4.1 Life tables derived from the first Heligman–Pollard law: parameters

A B C D E F G H

LT1 0.00054 0.01700 0.10100 0.00016 10.72 18.67 1.83000 E−05 1.11000

LT2 0.00054 0.01700 0.10100 0.00014 10.72 18.67 1.64700 E−05 1.11000

LT3 0.00054 0.01700 0.10100 0.00013 10.72 18.67 1.46400 E−05 1.11000

LT4 0.00054 0.01700 0.10100 0.00014 10.72 18.67 2.00532 E−06 1.13025

LT5 0.00054 0.01700 0.10100 0.00014 10.72 18.67 1.06038 E−06 1.13705

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
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Table 4.2 Life tables derived from the first Heligman–Pollard law: some markers
◦
e0

◦
e40

◦
e65 Lexis q0 q40 q80

LT1 77.282 38.601 16.725 83 0.00684 0.00121 0.07178

LT2 78.288 39.568 17.485 84 0.00684 0.00109 0.06507

LT3 79.412 40.653 18.352 85 0.00684 0.00097 0.05826

LT4 85.128 46.133 22.350 90 0.00682 0.00029 0.03475

LT5 86.464 47.446 23.389 91 0.00682 0.00020 0.02984

with respect to the observed population mortality, in order to allow for a (generic)
selection or self-selection in the insured populations. Hence, LT1, if adopted as the
pricing basis, can constitute a prudential choice in particular for insurance products
providing death benefits. Tables LT2 and LT3 could be market tables, constructed
as period tables, representing the mortality among insureds; the selection process
underlying LT3 is likely to be more rigorous than that underlying table LT2 (if any).
Finally, tables LT4 and LT5 could be cohort tables extracted from projected tables
(see Sects. 3.8.2–3.8.4), representing a weaker and, respectively, a stronger mortality
improvement. These tables should be adopted in relation to life annuities.

In the following sections, actuarial values calculated for pricing purposes will be
denoted with mE′

x , mA′
x , a′

x , and so on, to recall the underlying use of a pricing basis,
namely a first-order basis.

Further, we will denote with TB a generic technical basis, when a compact notation
can be useful. In particular, the first-order basis will be denoted with TB1, and the
second-order basis, namely the scenario or realistic basis, with TB2. For example,
the notation TB1 = (0.02, LT4) will denote that, in the pricing basis, the interest
rate i′ = 0.02 and the life table LT4 have been assumed.

4.3.2 The Pure Endowment

The pure endowment insurance provides the beneficiary (who often coincides with
the insured) with a lump sum benefit, S, at time m (namely, at maturity), if the insured
is alive at that time. The time from policy issue to maturity is also called the duration
of the contract.

The single premium is then given by

Π = S mE′
x = S (1 + i′)−m

mp′
x (4.3.4)

Note that mE′
x is the single premium for 1 monetary unit. It is often denoted as the

“premium rate” (of the pure endowment).
It is worth noting that this insurance product is not very common, because the

benefit is only paid in the case of survival (and yet the premium is high because,
for usual values of x and m, the probability of being alive at maturity is high). A
more common product is the pure endowment combined with the counterinsurance
benefit, which provides the beneficiary with the premium reimbursement (the so-

http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
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Table 4.3 The single
premium of a pure
endowment; S = 1 000,
TB1 = (0.02, LT1)

x m = 5 m = 10 m = 15

40 898.97 804.08 713.10

45 894.44 793.24 693.49

50 886.86 775.33 661.73

55 874.25 746.15 611.70

60 853.48 699.69 536.39

called return of premium) in the case the insured dies before the maturity. Clearly,
the premium is raised in order to account for this supplementary (or rider) benefit.

Example 4.3.1 Table 4.3 shows the effect of age and duration on the single premium
of a pure endowment, with S = 1 000. For any given policy duration m, the premium
decreases as the age x at the policy issue increases, because the probability of being
alive at maturity decreases. Clearly, the premium also decreases as the duration
increases, for any given age x.

Of course, the single premium depends on the technical basis underlying its cal-
culation, namely the pricing basis, as illustrated in Table 4.4. We recall that, moving
from table LT1 to LT5, a higher life expectancy (and, in general, an improved mor-
tality) is assumed. ❑

Remark It is worth noting that the assumption of a zero interest rate (in Example 4.3.1, and in
the following examples) means that no interest is allowed for in advance, namely when pricing the
insurance product. Nonetheless, a zero interest in the premium calculation phase does not imply
the ultimate absence of any return to the policyholders. Indeed, in most life insurance products, the
contract is yearly credited with an interest which depends on the return of insurer’s investments,
through various participation mechanisms, as we will see in Chap. 7.

Example 4.3.2 It is interesting to compare the single premium of a pure endowment
with the present value of a lump sum certainly paid at maturity. Table 4.5 allows us
to compare these values. In particular,

• the rows corresponding to i = 0, 0.01, 0.02, 0.03 allow us to perceive the effect of
the “mortality discounting,” if compared to the corresponding columns in Table 4.3;

• if we discount adopting the interest rate i = 0.02343, we obtain a present value
equal to the premium of a pure endowment with x = 45, m = 10, according to the
pricing basis TB1 = (0.02, LT1). In what follows, we turn back on this issue. ❑

Table 4.4 The single premium of a pure endowment; S = 1 000, x = 45, m = 10

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 966.96 875.37 793.24 719.51

LT2 970.19 878.30 795.90 721.91

LT3 973.44 881.24 798.56 724.33

LT4 990.76 896.93 812.77 737.22

LT5 993.34 899.26 814.88 739.14

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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Table 4.5 Present value of a
lump sum certain; S = 1 000,
m = 10

i 1000 (1 + i)−10

0 1 000.00

0.01 905.29

0.02 820.35

0.02343 793.24

0.03 744.09

0.04 675.56

0.05 613.91

The calculation of the single premium of a pure endowment relies on a twofold
discounting, namely a “financial” discounting (via the interest rate i′), and a “mor-
tality” discounting (via the probabilities p′). This feature is common to all insurance
products. However, for some insurance products, among which the pure endowment,
it is interesting to express the joint effect through an “equivalent” discount rate. As the
effect of the mortality discounting depends on the insured’s age throughout the pol-
icy duration, we denote this rate with gx,m. It is determined by solving the following
equation:

(1 + gx,m)−m = (1 + i′)−m
mp′

x (4.3.5)

The spread gx,m − i′ can be interpreted as follows. For a given sum insured S
and a given interest rate i′, the actuarial value of a pure endowment accounts for
mortality, and hence for the mutuality effect inside the pure endowment portfolio
(see Sect. 1.7.4). Thus, the mutuality mechanism results in recognizing mortality
credits to insureds who are alive.

Consequently, the premium Π turns out to be lower than the present value (at the
same rate) of the lump sum S paid certainly at maturity. Hence, if a person is willing
to invest the amount Π in a purely financial transaction providing him/her (or some
other beneficiary) with the amount S at maturity, a yield higher than i′ is needed,
in order to recover the mutuality effect (which clearly is not involved in a purely
financial transaction). Thus, the extra yield gx,m − i′, sometimes called the mortality
drag, “covers” the mortality credits.

Example 4.3.3 Table 4.6 shows the equivalent rates for various ages x at the com-
mencement of the financial transaction, and various durations m. Of course, the rate
(and hence the extra yield) increases as the age or the duration increase. ❑

Table 4.6 Equivalent
discount rate gx,m;
TB1 = (0.02, LT1)

x m = 5 m = 10 m = 15

40 0.02153 0.02205 0.02280

45 0.02256 0.02343 0.02470

50 0.02430 0.02577 0.02791

55 0.02724 0.02972 0.03331

60 0.03219 0.03636 0.04240

http://dx.doi.org/10.1007/978-3-319-21377-4_1


240 4 Life Insurance: Pricing

4.3.3 Life Annuities

A life annuity provides the annuitant with a sequence of periodic amounts, while
he/she is alive. The payment frequency may be monthly, quarterly, semi-annual, or
annual. In the following, for the sake of brevity, we only focus on annual payments,
even though annuities payable more frequently than once a year can be of practical
interest.

A number of types of life annuities are sold on insurance markets, and paid by
pension plans as well. The following terminology is usual:

• a voluntary life annuity (or purchased life annuity) is a life annuity bought as the
consequence of an individual choice, that is, exercised on a voluntary basis;

• a pension annuity is a life annuity paid to an individual as the direct consequence
of his/her membership of an occupational pension plan, or a life annuity bought
because a compulsory purchase mechanism works.

Although the two kinds of life annuity share the same technical structure, the adverse
selection effect is clearly higher in the voluntary annuities, and this should be
accounted for when choosing the pricing basis.

As seen in Sect. 4.2.5, annual amounts can be paid either in advance or in arrears.
Further, life annuities can be either immediate or deferred.

As regards the payment profile, the following types of life annuities can be singled
out.

• Level annuities (sometimes called standard annuities) provide the annuitant with
an annual income, b, which is constant in nominal terms. Thus, the payment profile
is flat.

• In the fixed-rate escalating annuity (or constant-growth annuity), the annual benefit
increases, either arithmetically or geometrically, at a fixed annual rate, α; according
to an arithmetical growth, we have the following sequence of payments:

b, (1 + α) b, (1 + 2 α) b, . . . (4.3.6)

whereas in the case of a geometrical growth, we find

b, (1 + α) b, (1 + α)2 b, . . . (4.3.7)

• Various types of index-linked escalating annuities are available in insurance and
pension markets. In these annuities, annual benefits vary in line with an inflation
index, or a stock index, or according to some profit participation mechanism, and
so on. Some types of index linking will be discussed in Chap. 7.

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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Table 4.7 The single premium of an immediate life annuity; b = 100, x = 65

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 1 622.55 1 462.05 1 325.15 1 207.62

LT2 1 698.55 1 524.98 1 377.64 1 251.72

LT3 1 785.24 1 596.23 1 436.66 1 300.97

LT4 2 185.04 1 923.61 1 706.88 1 525.74

LT5 2 288.92 2 007.36 1 774.94 1 581.51

We now focus on an immediate life annuity in arrears, with flat payment profile.
The single premium, Π , is given, according to the equivalence principle, by

Π = b a′
x = b

ω−x∑
h=1

hE′
x = b

ω−x∑
h=1

(1 + i′)−h
hp′

x (4.3.8)

(see (4.2.18)) where b denotes the annual benefit.
As the life annuity consists of a sequence of pure endowments, the mutuality

mechanism works as in the case of the pure endowment insurance, and results in
attributing mortality credits to the annuitants still alive.

Example 4.3.4 Table 4.7 shows the single premium of an immediate life annuity,
given by formula (4.3.8), as a function of the pricing basis. Clearly, table LT4 or LT5
should be used for pricing, as they embed a forecast of the future mortality trend.
The other tables are referred to only to show the dramatic differences in the resulting
actuarial values. ❑

In the context of fixed-rate escalating annuities, consider an arithmetically increas-
ing life annuity, which provide a lifelong sequence of benefits as stated by (4.3.6).
The single premium is given by

Π = b
ω−x∑
h=1

(
1 + (h − 1) α

)
hE′

x (4.3.9)

and can also be expressed as follows (see Eq. (4.2.32), with r = 1):

Π = b
(
a′

x + α 1|(Ia′)x
)

(4.3.10)

The complete life annuity (or apportionable annuity) is a life annuity in arrears
which provides a pro-rata adjustment on the death of the annuitant, consisting in a
final payment proportional to the time elapsed since the last payment date. Assuming
that the probability distribution of the time of death is uniform over each year, the
single premium is approximately given by
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Π = b a′
x + b

2
Ā′

x (4.3.11)

(see also (4.2.46)).
For a life annuity in advance the single premium is given (see (4.2.18)) by

Π = b ä′
x = b (a′

x + 1) (4.3.12)

When dealing with the life annuities we have just described, it is natural to look
at the single premium as the result of an accumulation process, in particular carried
out during (a part of) the working life of the annuitant (see Case 4a in Sect. 1.2.5).
It is worth noting that insurance products which extend over the whole accumula-
tion period can be conceived. This is, typically, the case of the deferred life annuity
whose deferred period coincides with the accumulation period. A reasonable pre-
mium arrangement should then consist of a sequence of periodic premiums. How-
ever, we stress that the longer is the deferred period, the higher is the risk borne by
the insurer, provided that the pricing basis is stated at the policy commencement,
or, at least, when each periodic premium is determined and paid. In particular, an
unanticipated improvement in mortality can cause serious technical problems.

Features of life annuities and possible packaging of a life annuity with other
lifetime-related benefits will be discussed in Chap. 8 (in particular, see Sect. 8.5).

4.3.4 The Term Insurance

The term insurance (or temporary insurance) pays the sum insured C at the end of
the year of death, if the insured dies prior to the term m.

This product faces the risk of a financial distress caused to a family by the early
death of a member who provides the family with an income. As noted in Sect. 1.2.5,
it is almost impossible to quantify in monetary terms the impact of an early death, in
particular because of the unknown value of the loss of income. Thus, the sum insured
should represent a tentative estimation of the random impact, and hence it should be
chosen in relation to the insured’s age, present income, the presence of dependants,
and so on.

This insurance product is very common in all the insurance markets. Given the
purpose, the age at entry is usually not old (say, in the range of 30–50). Various risk
factors can be accounted for in determining the premium rates (see Sects. 3.6.1 and
3.6.2). Their assessment is performed through appropriate questions in the appli-
cation form and, as to health conditions, possibly through a medical examination.
In the presence of poor health conditions, or a risky occupation, the applicant can
be accepted as a sub-standard risk (or impaired life; see Sect. 3.6.3); in this case, a
higher premium rate is adopted.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_8
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_3
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Table 4.8 The single premium of a term insurance; C = 1 000, x = 40, m = 10

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 19.83 18.63 17.53 16.51

LT2 17.89 16.80 15.81 14.89

LT3 15.93 14.97 14.08 13.26

Table 4.9 The single
premium of a term insurance;
C = 1 000,
TB1 = (0.02, LT1)

x m = 5 m = 10 m = 15

40 7.01 17.53 33.26

45 11.70 29.20 55.10

50 19.57 48.52 90.53

55 32.64 80.01 146.52

60 54.19 130.26 231.30

The single premium of a term insurance is given by

Π = C mA′
x (4.3.13)

Example 4.3.5 Table 4.8 shows the single premium of a term insurance as a function
of the interest rate i′ and the life table. We note that, for this insurance product, the
life table LT1 can constitute a prudential choice of the pricing basis, whereas LT2 or
LT3 can represent the expected mortality among the insureds.

Table 4.9 shows the effect of the age at policy issue and the duration on the single
premium of a term insurance. For any given duration m, the premium increases as
the age increases, because of an increasing probability of dying before the policy
term. For the same reason, the premium increases as the duration increases, for any
given age x. ❑

In formula (4.3.13), it has been assumed that the sum insured is constant over the
whole policy duration. If, on the contrary, the benefit changes moving from year to
year, we have the term insurance with varying benefit. Let Ch+1 denote the sum paid
at time h + 1 if the insured dies between times h and h + 1; then,

Π =
m−1∑
h=0

Ch+1 h|1A′
x (4.3.14)

In particular, the decreasing term insurance provides an arithmetically decreasing
benefit defined as follows:

C1 = C; C2 = m − 1

m
C; C3 = m − 2

m
C; . . . ; Cm = 1

m
C (4.3.15)
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Hence, from (4.3.14), we obtain the single premium

Π = C

m

m−1∑
h=0

(m − h) h|1A′
x (4.3.16)

which, after a little algebra, yields

Π = C

m

m−1∑
h=0

m−hA′
x (4.3.17)

The single premium can also be expressed by subtracting from C mA′
x the actuarial

value of an arithmetically increasing term insurance, with 1 year as the deferred period
(see Eq. (4.2.36)):

Π = C mA′
x − C

m
1|m−1(IA

′)x (4.3.18)

The decreasing term insurance is usually sold to guarantee a loan repayment
carried out via amortization; indeed, the decreasing benefit is approximately in line
with the outstanding debt.

4.3.5 The Whole Life Insurance

The whole life insurance pays the sum insured C at the end of the year of death,
whenever the death occurs:

Π = C A′
x (4.3.19)

The main historical purpose of the whole life insurance was the financing of
inheritance taxes. Currently, a typical aim of this insurance product is as follows:

• to cover the risk of death up to a certain age (60 or 65, say);
• to provide the insured with a lump sum at a certain age, by surrendering the policy

(see Sect. 4.1.2).

Example 4.3.6 Table 4.10 shows the single premium of a whole life insurance, for
various life tables and interest rates. It is interesting to note that, whatever the life
table and the interest rate, the premium is much higher than that of the term insurance;
this is obviously due to the fact that the benefit of the whole life insurance is certainly
paid, the only random item being the time of payment.

Premiums for various ages at entry (and a fixed technical basis) can be found in
Table 4.11. We note that the single premium increases as the age at entry increases;
this is clearly due to the shortening of the residual lifetime. ❑
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Table 4.10 The single premium of a whole life insurance; C = 1 000, x = 40

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 1 000.00 682.24 473.72 334.94

LT2 1 000.00 675.76 464.90 325.80

LT3 1 000.00 668.57 455.20 315.82

LT4 1 000.00 632.24 406.23 265.44

LT5 1 000.00 623.78 395.14 254.36

Table 4.11 The single
premium of a whole life
insurance; C = 1 000,
TB1 = (0.02, LT1)

x 1 000 A′
x

40 473.72

45 519.16

50 567.35

55 617.66

60 669.17

4.3.6 Combining Survival and Death Benefits

Survival benefits and death benefits can be packaged in several ways. Figure 4.4
shows three combinations of two lump sum benefits, in the case of survival and
death, respectively.

We note that, depending on the insured’s lifetime:

• according to arrangement A, there will be either no payment or one payment;
• arrangement B will generate either one payment or two payments;
• according to arrangement C, there will be one and only one payment.

age
time

x
0

x+nx+m
m n

death benefit survival benefit

no benefit if death in (m,n)

age
time

x
0

x+n
n m

x+m

death benefit

survival benefit

"double" benefit if death in (n,m)

age
time

x
0 m=n

x+n

death benefit

survival benefit
CA

B

Fig. 4.4 Combining benefits in the case of death and survival
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Usually, combining survival and death benefits aims at achieving the certainty of
some payments. Assuming this target, we note what follows:

• arrangement A fails the target, if the insured dies between time m and n;
• arrangement B can lead to “over-insurance,” because of the double payment in the

case the insured dies between time n and m;
• arrangement C looks like the most appropriate; of course, the amounts of the

death benefit and the survival benefit should be stated to comply with the specific
policyholder’s needs.

In the most common insurance products, in the framework of endowment insur-
ance, benefits are arranged as in structure C; nonetheless, some insurance products
follow the arrangement B.

4.3.7 Endowment Insurance Products

The standard endowment insurance (shortly, the endowment insurance), is defined
as the combination of a pure endowment and a term insurance, with a common sum
insured C and a common duration m. Hence, this type of endowment constitutes an
example of arrangement C defined in the previous section.

We note that the purpose of this insurance product is twofold:

• savings, as the sum insured will be available (in the case of survival) at maturity;
• protection, as the sum insured will be paid to the beneficiaries in the case of the

insured’s death prior to maturity.

The single premium is given by

Π = C
(

mE′
x + mA′

x

) = C A′
x,m� (4.3.20)

Example 4.3.7 Table 4.12 displays the single premium as a function of the pricing
basis. It is worth noting that, although the premium obviously depends on the life
table adopted, a change in the life table has a very weak effect on the premium itself.
This is clearly due to the fact that the sum insured is certainly paid, and only the
time of payment is affected by the mortality assumption. Anyway, the premium is
higher when the mortality is assumed to be higher (as expressed, for example, by
table LT1). Hence, a mortality higher than that expected among insureds represents
a prudential choice. ❑

Example 4.3.8 Table 4.13 shows, in particular, the splitting of the single premium of
an endowment insurance into the single premiums of the two components, namely
the pure endowment (C mE′

x) and the term insurance (C mA′
x), for various ages at

entry. We note that the single premium of the endowment insurance has a small



4.3 Single Premium 247

Table 4.12 The single premium of an endowment insurance; C = 1 000, x = 50, m = 15

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 1 000.00 866.51 752.26 654.32

LT2 1 000.00 866.01 751.37 653.11

LT3 1 000.00 865.51 750.47 651.90

Table 4.13 Components of the single premium of an endowment insurance; C = 1 000, m = 15,
TB1 = (0.02, LT1)

x 1 000 A′
x,15� Pure endowment

+ term insurance
Benefit-certain + acceleration benefit

1 000 15E′
x 1 000 15A′

x 1 000 (1 + i′)−15 1 000
(

A′
x,15� − (1 + i′)−15

)
40 746.36 713.10 33.26 743.01 3.35

45 748.59 693.49 55.10 743.01 5.57

50 752.26 661.73 90.53 743.01 9.25

55 758.23 611.70 146.52 743.01 15.21

60 767.69 536.39 231.30 743.01 24.67

increase in spite of a significant increase in the age at entry, whereas the premiums
of the two components strongly depend on the age itself, decreasing and increasing,
respectively, as the age increases. We also note that, for all the ages addressed, the
actuarial value of the survival benefit is much higher than that of the death benefit,
because the probability of being alive at maturity is higher than the probability of
dying prior to maturity (at least in the range of ages we have considered). This result
seems to be in contrast with the effect of the life table on the single premium, which
has been stressed in Example 4.3.7; then, a deeper analysis of the nature of the
endowment insurance is appropriate. ❑

The (usual) definition of the endowment insurance, as the combination of a pure
endowment and a term insurance, does not allow us to correctly capture the tech-
nical contents of this insurance product, and consequently the risk borne by the
insurer (whereas it does allow to understand the twofold purpose of the endowment
insurance). We now address this point.

From the identity

A′
x,m� = (1 + i′)−m +

(
A′

x,m� − (1 + i′)−m
)

(4.3.21)
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namely

A′
x,m� = (1 + i′)−m

+
m−1∑
h=0

(1 + i′)−(h+1)
h|1q′

x + (1 + i′)−m
mp′

x

︸ ︷︷ ︸
A′

x,m�

− (1 + i′)−m

(
m−1∑
h=0

h|1q′
x + mp′

x

)
︸ ︷︷ ︸

1

(4.3.22)

we obtain

Π = C A′
x,m� = C (1 + i′)−m + C

(
A′

x,m� − (1 + i′)−m
)

= C (1 + i′)−m +
m−2∑
h=0

C
(
(1 + i′)−(h+1) − (1 + i′)−m

)
︸ ︷︷ ︸

Γh

h|1q′
x (4.3.23)

We note that each Γh in (4.3.23) is the present value of the “acceleration” in the
benefit payment due to the insured’s death before maturity (and, anyhow, before
the last year of the insurance cover). Thus, formula (4.3.23) suggests the following
interpretation: the single premium of an endowment insurance can be obtained as
the present value of an amount certain at maturity plus the actuarial value of the
acceleration benefit.

Hence, the endowment insurance can be seen as a product providing the benefi-
ciary with a payment acceleration in the case of death. It follows that the risk borne
by the insurer is the risk of insured’s death prior to maturity.

If i′ = 0, trivially, we have Γh = 0 for all h, and, of course Π = C.

Example 4.3.9 The last column in Table 4.13 shows the actuarial value of the accel-
eration benefit. Of course, the value increases as the age increases, because of the
higher probability of dying prior to maturity. The actuarial value of the acceleration
benefit turns out to be the only term depending on the insured’s lifetime (see the last
line of formula (4.3.23)), and this explains how a mortality higher than that expected
inside the endowment portfolio is a prudential choice (as remarked in Example 4.3.7).
❑

The survival benefit, S, in an endowment insurance can be different from the death
benefit, C. The single premium is then given by

Π = S mE′
x + C mA′

x (4.3.24)
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In particular, when S > C, we have the product sometimes called the endowment
insurance with additional survival benefit. Setting S = (1 + α) C, we obtain

Π = α C mE′
x + C A′

x,m� (4.3.25)

Note that also this product implements the arrangement C (see Sect. 4.3.6).
The insurance product build-up combining a pure endowment with a whole

life insurance is denoted as the double endowment insurance. Its single premium
is given by

Π = C
(

mE′
x + A′

x

) = C A′
x,m� + C m|A′

x (4.3.26)

This product constitutes an example of arrangement B, with m = ω − x.

Remark We note that, whenever a death benefit is included in the insurance contract, this can be
assumed to be payable at the time of death rather than at the end of the year of death. Then, the
approximations expressed by formulae (4.2.45)–(4.2.47) can be used for the single premium of the
term insurance, the whole life insurance, and the endowment insurance products.

4.3.8 The Expected Profit: A First Insight

The assessment of expected profits is one of the main topics in actuarial mathe-
matics. Sections 5.5 and 6.2–6.4 are specifically devoted to this important aspect of
life insurance. Nevertheless, some basic ideas already emerge from single premium
calculation models.

As stated in Sect. 4.3.1, we assume that, for all the insurance products, the sin-
gle premium Π is calculated as the actuarial value of the benefits provided by the
insurance policy, and that, in the relevant calculations, the first-order technical basis,
denoted by TB1, is assumed.

For example, referring to a whole life insurance with benefit C, we have Π =
C A′

x (see (4.3.19)). Let C A′′
x denote the actuarial value of the benefit, calculated

by adopting the second-order basis, TB2. Thus, C A′′
x provides us with a “realistic”

evaluation of the benefit, in terms of

• the interest rate, i′′, which should represent the estimated investment yield;
• the probabilities of death, q′′, which should represent the portfolio mortality actu-

ally expected.

Let PL denote the expected present value of the profit/loss, also called the profit
margin; we have

PL = Π − C A′′
x = C(A′

x − A′′
x ) (4.3.27)

Example 4.3.10 Table 4.14 shows the profit margin, in absolute terms and relative
terms (namely, referred to the single premium), for the term insurance, the whole life
insurance, and the endowment insurance. A′ and A′′ generically denote the expected
present value of benefits, according to TB1 and TB2, respectively. As regards the

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6
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Table 4.14 Profit margins—TB1 = (0.03, LT1); TB2 = (0.03, LT3)

Insurance product Π = C A′ C A′′ PL PL/Π (%)

Term insurance; C = 1 000;
x = 40, m = 10

16.51 13.26 3.25 19.69

Whole life insurance; C = 1 000;
x = 40

334.94 315.82 19.12 5.71

Endowment insurance;
S = C = 1 000; x = 50, m = 15

654.32 651.90 2.42 0.37

Table 4.15 Profit margins—TB1 = (0.02, LT3); TB2 = (0.03, LT3)

Insurance product Π = C A′ C A′′ PL PL/Π (%)

Term insurance; C = 1 000;
x = 40, m = 10

14.08 13.26 0.82 5.82

Whole life insurance; C = 1 000;
x = 40

455.20 315.82 139.38 30.62

Endowment insurance;
S = C = 1 000; x = 50, m = 15

750.47 651.90 98.57 13.13

interest rate, it should be noted that we have assumed i′ = i′′ = 0.03; it follows that
the profit margins originate from the spread between the first-order mortality and the
second-order mortality. Further, it is interesting to note that, in relative terms, the
effect of the mortality spread is very high in the term insurance, in which the benefit
is only paid in the case of death before the policy term, while it is extremely low
in the endowment insurance, in which the benefit is certainly paid within the policy
term.

Table 4.15 shows the profit margins originated by the spread between interest
rates. Indeed, it has been assumed that the mortality adopted in the first-order basis
coincides with the mortality actually expected in the portfolio. It is worth noting that
the effect is much higher in the whole life insurance and the endowment insurance
than in the term insurance; this happens because the former insurance products have
more important financial contents, as we will see in Chap. 5. ❑

4.4 Periodic Premiums

The expression periodic premiums denotes a wide range of premium arrangements,
which share the common target of meeting reasonable policyholders’ wishes. Dif-
ferent premium arrangements originate different technical and financial problems.
We start dealing with this issue by focussing on a simple preliminary example.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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4.4.1 An Example

We refer to a term insurance, with m = 5 and sum assured C = 1. The single
premium is then given by Π = 5A′

x . Assume that, instead of the single premium Π ,
a sequence of annual premiums

P0, P1, P2, P3, P4 (4.4.1)

payable at times t = 0, 1, . . . , 4, respectively, is agreed. Each premium will be
paid at the beginning of a policy year, provided that the insured will be alive at that
time. Hence, the stream of annual premiums is a random inflow, which constitutes a
temporary life annuity.

We start considering the case of two premiums only, and we set

P2 = P3 = P4 = 0

For the premium calculation, we adopt the equivalence principle (see Sect. 4.3.1).
First, we note that, as the premium P1 will be paid provided that the insured will
be alive at time t = 1, the sequence of premiums has a random present value, X,
given by

X = P0 +
{

P1 (1 + i′)−1 if Kx ≥ 1

0 otherwise
(4.4.2)

The related actuarial value is then

E[X] = P0 + P1 (1 + i′)−1
1p′

x = P0 + P1 1E′
x (4.4.3)

(assuming that the pricing basis is also adopted for discounting premiums).
According to the equivalence principle, we must have

Actuarial value of premiums = Actuarial value of benefits (4.4.4)

The actuarial value of benefits is given by 5A′
x , then the premiums must be solutions

of the following equation:
P0 + P1 1E′

x = 5A′
x (4.4.5)

We note that Eq. (4.4.5) has two unknowns, and thus an infinity of solutions. We
start considering two particular solutions:

P0 = 5A′
x, P1 = 0 (4.4.6a)

P0 = 0, P1 = 5A′
x

1E′
x

(4.4.6b)
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As regards these solutions, the following features should be stressed.

1. Solution (4.4.6a) trivially yields the single premium.
2. Solution (4.4.6b) is not feasible. To this regard, we note what follows.

a. Solution (4.4.6b) complies with the equivalence principle; thus, its unfeasi-
bility concerns another criterion (not yet declared).

b. If the policyholder “lapses” (i.e., abandons) the contract at time 1, before
paying premium P1, he/she has obtained a one-year insurance cover free of
any charge, namely without contributing to the mutuality in the portfolio.

c. In the case of lapse, for the insurer, a practical difficulty arises in obtaining
the payment.

Remark under point c leads to the conclusion that the insurer should never be in
a credit position. This requirement is denoted as the financing condition.

The expected present value of the first year cover is given by 1A′
x . Hence, feasible

solutions, namely solutions fulfilling the financing condition, are the pairs P0, P1
such that

P0 ≥ 1A′
x (4.4.7)

In particular, it can be proved that

P0 = 1A′
x ⇒ P1 = 4A′

x+1 (4.4.8)

Thus,

• premium P0 exactly meets the expected cost of the insurance cover in the first
year, so that at time 1 the insurer is neither in a credit nor in a debt position;

• premium P1 can be interpreted as the single premium for the residual duration of
the contract, provided that the insured is alive at time 1.

Conversely,
P0 > 1A′

x ⇒ P1 < 4A′
x+1 (4.4.9)

Hence,

• the insurer cashes at policy issue more than what is needed to meet the expected
cost in the first year, whereas at time 1 cashes less than what is needed to cover
the costs over the residual duration;

• at time 1, an amount is available (namely, an asset) to face the insufficiency of P1;
a corresponding debt (a liability) arises at the end of the first year.

The assets and liability originated by a premium arrangement fulfilling the
inequalities in (4.4.9) are the two aspects of the mathematical reserve of the insurance
contract.

We note that, in the case of a single premium, the only cash inflow (at the policy
issue) originates a similar situation, in terms of assets and liability.
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We now move, still referring to the 5-year term insurance, to premiums arrange-
ments in which all the annual premiums are positive.

First, assume that the annual premiums are defined as follows:

Ph = 1A′
x+h; h = 0, 1, . . . , 4 (4.4.10)

We note that each premium (which will be paid provided that the insurer will be
alive at the time of payment) fulfills the equivalence principle on a one-year basis.
A similar premium arrangement is very common in non-life insurance, as we will
see in Chap. 9. The annual premiums defined by (4.4.10) are commonly called the
natural premiums, and are denoted with P[N]

h .
Of course, the sequence of natural premiums also fulfills the equivalence principle

over the whole policy duration. In fact, we have

4∑
h=0

hE′
x P[N]

h =
4∑

h=0

hE′
x 1A′

x+h =
4∑

h=0

h|1A′
x = 5A′

x (4.4.11)

The financing condition is also fulfilled. In particular, at each policy anniversary,
there is neither credit nor debt.

We recall that 1A′
x+h = (1 + i′)−1 q′

x+h. Hence, the natural premiums of the term
insurance are increasing if the annual probabilities of death are increasing, and this
usually happens for ages and durations involved in this type of cover.

To avoid a sequence of increasing premiums, an arrangement based on level
premiums can be applied. According to the equivalence principle, the annual premium
P must be the solution of the following equation:

P
4∑

h=0

hE′
x = 5A′

x (4.4.12)

(which generalizes Eq. (4.4.5)), and then we obtain

P = 5A′
x

ä′
x:5�

(4.4.13)

Example 4.4.1 In Fig. 4.5, the natural premiums and the level premiums of a term
insurance are plotted. The pricing basis is TB1 = (0.02, LT1); we have assumed
x = 40, m = 5. Then, the annual level premium is P = 1.46. We note that, in the
first policy years, the insurer cashes more than what is needed to meet the annual
expected costs (expressed by the natural premiums), whereas in the last years the
amounts cashed are lower than the expected costs. Thus, a reserving process is
required, aiming to “transfer” money from the initial years to the final ones. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_9
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Fig. 4.5 Term insurance:
natural premiums and annual
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Equation (4.4.13) can be written as follows:

P =
∑4

h=0 hE′
x 1A′

x+h∑4
h=0 hE′

x

(4.4.14)

Hence, the annual level premium P turns out to be the weighted arithmetic mean
of the natural premiums P[N]

h = 1A′
x+h; the weights are given by the hE′

x , and thus
depend on the probability of being alive and hence paying the premium, and the time
from policy issue to time of payment.

A level premium arrangement can also be based on a payment duration shorter
than the policy duration. For example, let P(3) denote the level premium payable for
three years; we then have

P(3) = 5A′
x

ä′
x:3�

(4.4.15)

Of course, we find P(3) > P (where P again denotes the premium payable for the
whole policy duration).

4.4.2 Level Premiums

We now refer to a generic life insurance contract, and start discussing level premium
arrangements. We denote with

• Y the random present value of the benefits;
• X the random present value of the premiums;
• Z the random present value of the insurer’s result (profit or loss).

Of course, we have
Z = X − Y (4.4.16)



4.4 Periodic Premiums 255

We adopt the equivalence principle. Hence, we must have E[Z] = 0, and then

E[X] = E[Y ] (4.4.17)

Provided that we calculate the single premium Π according to the same principle
and adopting the same technical basis, we must then have

E[X] = Π (4.4.18)

Let s denote the duration of the premium payment, s ≤ m, and P(s) the amount
of the level premium. Then, Eq. (4.4.18) can be written as follows:

P(s) äx:s� = Π (4.4.19)

From the inequality äx:s� < s, we find, whatever the duration s of the premium
payment:

P(s) >
Π

s
(4.4.20)

Moreover, if s1 < s2, we have
P(s1) > P(s2) (4.4.21)

In a number of insurance products, level premiums can be paid over the whole
policy duration m, namely s = m. On the contrary, in some products, the payment
period must be shortened, so that s < m. As we will see, one reason for shortening
the payment period is the fulfilling of the financing condition. When s < m, the level
premium will be denoted by P(s), whereas just the symbol P will be used in the case
s = m. Some examples follow. In all the examples, we assume a unitary amount
insured.

In a pure endowment insurance with duration m, we have

P(s) = mE′
x

ä′
x:s�

(4.4.22)

In a term insurance with duration m, we have

P(s) = mA′
x

ä′
x:s�

(4.4.23)

In an endowment insurance with duration m, we have

P(s) = A′
x,m�

ä′
x:s�

(4.4.24)

Usually, in all these products, we have s = m.
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Table 4.16 Single premium and annual level premiums for some insurance products

Insurance product x m Π s P(s)

Pure endowment 45 10 793.24 5
10

165.72
87.60

Term insurance 40 10 17.53 5
10

3.66
1.93

Endowment insurance 50 15 752.26 5
10
15

157.63
83.74
59.54

Whole life insurance 40 473.72 10
20
30
ω − x

52.07
29.02
21.80
17.65

In a whole life insurance, the premium payment can, in principle, extend over the
whole policy duration; the premium is then given by

P(ω − x) = A′
x

ä′
x

(4.4.25)

In practice, however, the premium payment is restricted to s years, so that x + s = 70
or 75, say. Then, we have

P(s) = A′
x

ä′
x:s�

(4.4.26)

Example 4.4.2 Table 4.16 shows single premiums and level premiums with various
payment durations, for some insurance products; TB1 = (0.02, LT1), and the sum
insured is C = 1 000 (or S = 1 000) in all the cases. ❑

4.4.3 Natural Premiums

Consider a life insurance product, and

1. refer to the (h + 1)th year of contract, h = 0, 1, . . . , namely the interval between
time h and h + 1;

2. assume that the insured is alive at time h;
3. single-out the benefits that fall due in the (h + 1)th year;
4. calculate the actuarial value at time h of the benefits referred to in step 3; this

actuarial value is also called the expected annual cost (of the benefits).

The natural premiums of the contract are, by definition, the expected annual costs.
The technical basis adopted in step 4 is usually the pricing basis.
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Natural premiums provide, on one hand, important technical information about
the time profile of the insurer’s expected costs. On the other hand, natural premiums
not necessarily constitute a practicable arrangement for the premium payment, as we
will see in what follows.

For example, the natural premiums of a m-year term insurance with C = 1 are
defined as follows:

P[N]
h = 1A′

x+h = (1 + i′)−1
1q′

x+h; h = 0, 1, . . . , m − 1 (4.4.27)

Hence, for ages and durations usually involved in this insurance product, the natural
premiums are increasing throughout the policy duration.

In a term insurance with sum assured Ch+1 in the case of death in year h + 1, we
have

P[N]
h = Ch+1 1A′

x+h = Ch+1 (1 + i′)−1
1q′

x+h; h = 0, 1, . . . , m − 1 (4.4.28)

We note that, if the Ch+1’s decrease as h increases (see, for example, the decreas-
ing term insurance defined in Sect. 4.3.4), the natural premiums may decrease (see
Example 4.4.4).

In both the types of term insurance, natural premiums constitute a possible
arrangement for premium payment.

Example 4.4.3 Figures 4.6 and 4.7 show the time profile of natural premiums of term
insurances (with constant sum insured). The pricing basis is TB1 = (0.02, LT1). In
particular, in Fig. 4.6, natural premiums and level premiums of a term insurance with
C = 1 000, x = 40, m = 10 are compared, whereas Fig. 4.7 shows the behavior of
the natural premiums for various ages at policy issue. We note that the higher is the
age, the higher is the increase in natural premiums; this is due to the fact that the
annual probabilities of death increase at an increasing rate. ❑

Example 4.4.4 Figure 4.8 shows the behavior of natural premiums of decreasing
term insurances with Ch = m−h+1

m C (see (4.3.15)), with C = 1 000, x = 40, for
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Fig. 4.7 Natural premiums
of a term insurance for
various ages at the policy
issue

-

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

Policy anniversary

Natural premium, x=40

Natural premium, x=45

Natural premium, x=50

Fig. 4.8 Natural premiums
of decreasing term
insurances, with various
policy terms

various policy terms m. The pricing basis is TB1 = (0.02, LT1). We note that the
policy term affects the time profile of the natural premiums. Indeed, the longer the
total duration, the slower is the decrease of the insured amount Ch; the combined
effect of the increasing probability of death and the decreasing sum insured follows.
The case m = 10 is addressed in Fig. 4.9. In panel (a), we see that, if the payment of
level premiums is stated over the whole policy duration, the financing condition is
not fulfilled, and the insurer immediately enters into a credit position. Conversely, the
condition is fulfilled if the premium payment period is properly shortened (s = 7),
as displayed in panel (b). ❑

In the presence of decreasing natural premiums, the financing condition is fulfilled
if level premiums which are payable over an appropriate duration s, shorter than the
policy duration m. In particular, if natural premiums are decreasing throughout the
whole policy duration, feasible premium arrangements require a duration s such that

P(s) ≥ P[N]
0 (4.4.29)

(see Fig. 4.9(b)). If condition (4.4.29) is fulfilled, the insurer immediately enters into
a debt position.
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Fig. 4.9 Natural premiums, level premiums, and shortened level premiums of a decreasing term
insurance; m = 10

We now consider a pure endowment, with a unitary sum insured. As this insurance
products only provides a benefit in the case of survival at maturity (time m), we have

P[N]
h = 0; h = 0, 1, . . . , m − 2 (4.4.30a)

P[N]
m−1 = 1E′

x+m−1 = (1 + i′)−1
1p′

x+m−1 (4.4.30b)

Obviously, natural premiums do not represent a reasonable arrangement of premium
payment for this insurance product.

A (standard) endowment insurance is built up combining a pure endowment with
a term insurance, both with duration m. Then, referring to a unitary sum insured, we
find

P[N]
h = 1A′

x+h = (1 + i′)−1
1q′

x+h; h = 0, 1, . . . , m − 2 (4.4.31a)

P[N]
m−1 = 1A′

x+m−1 + 1E′
x+m−1

= (1 + i′)−1 (1q′
x+m−1 + 1p′

x+m−1) = (1 + i′)−1 (4.4.31b)

Clearly, also in this case, natural premiums do not represent a reasonable arrangement
of premium payment, because of the presence of the pure endowment component.

4.4.4 Single Premium, Natural Premiums, and Level
Premiums: Some Relations

The single premium Π , according to the equivalence principle, is the actuarial value
(at the policy issue) of the benefits provided by an insurance contract (see (4.3.3)).
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Assume a policy duration of m years (it is understood that what follows can be applied
to lifelong contracts also, by setting m = ω − x). Intuitively, the actuarial value of
the benefits can be expressed as the sum of the actuarial values (at the policy issue)
of the benefits falling due in the various policy years. Each of these actuarial values
can be expressed as hE′

x P[N]
h , h = 0, 1, . . . , m−1, since P[N]

h quantifies the expected
value at time h of the benefits pertaining to year h + 1, provided that the insured is
alive at that time.

Hence, we have

Π =
m−1∑
h=0

hE′
x P[N]

h (4.4.32)

An example is provided by formula (4.4.11).
Assume that annual level premiums, P, are paid throughout the whole policy

duration. The equivalence principle requires that relation (4.4.18) is fulfilled. We
then obtain

P äx:m� = Π (4.4.33)

and hence, from (4.4.32),

P =

m−1∑
h=0

hE′
x P[N]

h

m−1∑
h=0

hE′
x

(4.4.34)

It turns out that the level premium P is a weighted arithmetic mean of the natural
premiums P[N]

h ’s, with the hE′
x’s as the weights. An example is provided by the annual

level premium of a term insurance, as expressed by (4.4.14).
We stress that expression (4.4.34), and the related interpretation hold with the

proviso that the level premiums are paid as long as the policy is in-force. Thus, they
do not hold in the case of shortened level premiums, as, for example, in formula
(4.4.26).

The actuarial saving premium, or reserve premium, denoted as P[AS]
h , is defined

as follows:
P[AS]

h = P − P[N]
h ; h = 0, 1, . . . (4.4.35)

(in the case of annual level premiums). Clearly, when P[AS]
h > 0, a share of the

premium P is accumulated (“reserved”) to meet future benefits, whereas, when
P[AS]

h < 0, an amount higher than the premium P is needed to meet benefits falling
due in the current year, and hence resources previously accumulated must be used.

We note that the pair (P[N]
h , P[AS]

h ), for h = 0, 1, . . . , constitutes a splitting of the
annual premium. A more important splitting will be discussed in Sect. 5.4.3.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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4.4.5 Single Recurrent Premiums

Premium arrangements other than those consisting of either level premiums or nat-
ural premiums can be conceived in order to gain flexibility in the time profile of pre-
mium payment. An interesting example is given by the single recurrent premiums.
We describe ideas underlying single recurrent premiums and their implementation
referring to two examples, namely the pure endowment and the whole life insurance.

Refer to a pure endowment insurance with maturity at time m, and assume that, in
order to meet the benefit, a sequence of payments, i.e., the single recurrent premiums,
Π0,Π1, . . . ,Πm−1, is arranged. The premium Πh, paid at time h, funds the benefit
�Sh deferred m − h years, which constitutes an increase in the “cumulated benefit.”

In formal terms, the link among premiums and benefits is described by the fol-
lowing relations:

Π0 = �S0 mE′
x; S1 = �S0

Π1 = �S1 m−1E′
x+1; S2 = S1 + �S1

Π2 = �S2 m−2E′
x+2; S3 = S2 + �S2 (4.4.36)

. . . . . .

Πm−1 = �Sm−1 1E′
x+m−1; Sm = Sm−1 + �Sm−1

The amount Sm turns out to be the (total) sum insured, progressively financed by
the single recurrent premiums Πh’s. Each one of the premiums can be stated at the
time of payment. It follows that Sm is ultimately known at time m − 1 only, when the
last premium is paid. Figure 4.10 illustrates the progressive financing of Sm.

As the total amount Sm consists, from a technical point of view, of m pure endow-
ments, the related accumulation process relies on both interest and mutuality, so that
Sm turns out to be greater than the result of a purely financial accumulation.

0 1 2 … … … m-1     m 0 1 2 … … … m-1     m

Premiums Benefits 

ΔS0

ΔS1

ΔS2

ΔSm-1

Sm

Fig. 4.10 Pure endowment financed by single recurrent premium
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Table 4.17 Pure endowment insurance and financial accumulation

h Πh �Sh Sh+1 �Mh Mh+1

0 100 128.98 128.98 121.90 121.90

1 100 126.02 255.00 119.51 241.41

2 100 123.09 378.08 117.17 358.57

3 100 120.17 498.25 114.87 473.44

4 100 117.27 615.53 112.62 586.06

5 120 137.26 752.79 132.49 718.55

6 120 133.81 886.59 129.89 848.44

7 120 130.36 1 016.95 127.34 975.79

8 120 126.91 1 143.86 124.85 1 100.63

9 120 123.46 1 267.32 122.40 1 223.03

Example 4.4.5 Table 4.17 provides an example of pure endowment insurance
financed by a sequence of single recurrent premiums. Data are as follows: x = 50,
m = 10, and TB1 = (0.02, LT1). The resulting accumulation process is then com-
pared to the financial accumulation of amounts equal to the single recurrent premium.
According to this process, we have, for h = 0, 1, . . . , m − 1,

�Mh = Πh (1 + i′)m−h; Mh+1 = Mh + �Mh

with M0 = 0. ❑

Refer to a whole life insurance, and assume that, in order to meet the benefit,
a sequence of payments (the single recurrent premiums), Π0,Π1, . . . ,Πh, . . . , is
arranged. The premium Πh, paid at time h, funds the amount �Ch which, from time
h onwards, constitutes a share of the cumulated sum assured. The following relations
describe the link among premium Πh, amount �Ch, and amount Ch+1 which turns
out to be the total sum assured at time h (payable in the case of death between h and
h + 1). See Fig. 4.11.

Π0 = �C0 A′
x; C1 = �C0

Π1 = �C1 A′
x+1; C2 = C1 + �C1

. . . . . . (4.4.37)

Πh = �Ch A′
x+h; Ch+1 = Ch + �Ch

. . . . . .

Example 4.4.6 Table 4.18 provides an example of whole life insurance financed
by a sequence of s single recurrent premiums. Data are as follows: x = 50,
s = 25, and TB1 = (0.02, LT1). Single recurrent premiums are assumed to be
constant: Πh = 100, for h = 0, 1, . . . , 24. It is interesting to compare the resulting
time profile of the sum assured Ch to the (constant) amount C assured in a traditional
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s-1     0 1 2 … … … 0 1 2 … … s-2     s-1      

Premiums Benefits 

ΔC0

ΔC1

ΔC2

ΔCs-1

Cs

C1

C2

Fig. 4.11 Whole life insurance financed by single recurrent premium

Table 4.18 Whole life insurance: single recurrent premium and level premiums

h Πh = P(25) ΔCh Ch+1 C

0 100 176.26 176.26 3 202.60

1 100 173.23 349.49 3 202.60

2 100 170.28 519.77 3 202.60

3 100 167.41 687.18 3 202.60

4 100 164.62 851.80 3 202.60

5 100 161.90 1 013.70 3 202.60

… … … …

10 100 149.44 1 785.08 3 202.60

11 100 147.17 1 932.25 3 202.60

12 100 144.96 2 077.21 3 202.60

13 100 142.83 2 220.05 3 202.60

14 100 140.77 2 360.82 3 202.60

15 100 138.78 2 499.60 3 202.60

… … … …

20 100 129.83 3 166.00 3 202.60

21 100 128.24 3 294.24 3 202.60

22 100 126.71 3 420.96 3 202.60

23 100 125.25 3 546.20 3 202.60

24 100 123.84 3 670.05 3 202.60

25 0 0.00 3 670.05 3 202.60

26 0 0.00 3 670.05 3 202.60

… … … …

whole life insurance financed via annual level premiums, P(25) = 100, payable for
25 years:

C A′
50 = P(25) ä′

50:25�
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We note that Ch+1 < C in the first 21 years, whereas later we have Ch+1 > C.
For example, if the insured dies in the twelfth year, according to the single recurrent
premium arrangement, the benefit is C12 = 1 932.25, whereas if he/she dies in
the twenty-third year, the benefit is C23 = 3 420.96; of course, if the traditional
level premium arrangement has been adopted, in both the cases, the benefit is C =
3 202.60. We can conclude that, initially, in the level premium arrangement, the same
cumulated amount of premiums has to meet a sum assured higher than that financed
by single recurrent premiums. Hence, mutuality plays a more important role, and the
insurer bears a higher mortality risk. Then, an inversion occurs, and the mortality
risk progressively decreases. ❑

In a whole life insurance financed via single recurrent premiums, if i′ = 0, then
we have A′

x+h = 1 for all h, and hence (see relations (4.4.37)),

�Ch = Πh; h = 0, 1, . . . (4.4.38)

Thus, the whole life insurance degenerates in a pure accumulation at zero interest
rate. In the case of death in the tth year, the benefit paid is given by

Ct =
t−1∑
h=0

Πh (4.4.39)

Hence, no mortality risk is borne by the insurer.

4.4.6 Some Concluding Remarks

Each premium arrangement determines a specific inflow stream (namely, the sequence
of premiums cashed by the insurer), which offsets the expected outflow stream (the
sequence of expected benefits). Specific implications, concerning the finance of an
insurance contract, can be found by comparing the time profile of the two streams.

The following features of premium arrangements should be stressed.

1. In the case of a single premium, the inflow is clearly concentrated at the pol-
icy issue. Hence, an important share of the premium itself (possibly, the whole
premium) is to be reserved, whatever the type of insurance product.

2. A premium arrangement based on single recurrent premiums clearly leads to the
single premium situation, iterated as many times as many premiums are cashed
by the insurer. “Scaled” reserving processes then originate.

3. A situation, which clearly appears as the opposite to the single premium regime,
arises from the natural premium arrangement (when applicable). In this case,
each premium exactly funds the benefits expected to fall due in the relevant year.
No reserving process develops throughout the policy duration (but the need for a
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one-year based reserving, which reflects the expected progressive consumption
of the premium in the mutuality mechanism).

4. Level premiums must be arranged (as regards the duration of the premium stream)
so that the financing condition is fulfilled. In many insurance products, level
premiums payment can extend over the whole policy duration. In any case, the
premium stream must “anticipate” the expected benefits, and hence a reserving
process follows.

To conclude, we stress that any reserving process implies an investment–disinvest-
ment process, whose impact on the insurer’s finance obviously depends on the mag-
nitude of the amounts involved. Related consequences are

• financial profit opportunities, thanks to a (positive) spread between the yield on
investments and the interest rate credited to insurance contracts;

• disinvestment risk, due to a sudden need for liquidity because of benefits falling
due at unexpected early dates, for example because of a mortality higher than
expected, or an unanticipated number of surrenders.

4.5 Loading for Expenses

The operations involved by an insurance contract, by the management of a portfolio,
and by the management of the whole insurance company imply several types of
expenses.

Expenses constitute one of the ingredients in the premium calculation, as already
mentioned in Sect. 1.7.3 (see Fig. 1.21). To this purpose, expense loadings must be
determined, and then expense-loaded premiums.

4.5.1 Premium Components

Figure 4.12 illustrates the shift from the equivalence premium to the gross premium,
that is, the amount actually paid by the contractor, and the main components of this
amount are singled out.

We start from the equivalence premium, only allowing for the benefits. If this
premium is calculated by adopting the prudential or first-order technical basis (as is
common in life insurance), then it already includes an implicit profit/safety loading.
Conversely, when the equivalence premium relies on a natural or scenario or second-
order technical basis, a profit/safety loading must explicitly be added. The premium
including the safety loading (either implicit or explicit), but not allowing for expenses,
is called the net premium (or pure premium).

Remark We note that “combined” solutions are also feasible: a “weak” prudential basis can be
chosen, and an explicit profit/safety loading is then added in order to determine the net premium.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 4.12 Premium components

Expenses can be accounted for, and then included into the premium via an appro-
priate loading, by adopting one of the two following approaches:

• a global (or forfeiture) expense loading, according to which the premium is simply
increased by a percentage such that the resulting loading approximately meets all
the expenses attributed to the contract;

• an analytical expense loading, based on recognizing several types of expenses and
then determining the related loading components.

In what follows, we focus on the analytical approach, whose greater complexity is
compensated by the possibility of a more appropriate quantification of the various
expense components.

The premium including the expense loading is called the gross premium, or the
expense-loaded premium (or the office premium, or the tariff premium).

The amount actually paid by the contractor may also include taxes which, however,
do not involve technical aspects, as taxes are simply cashed by the insurer and then
forwarded to tax authorities.

4.5.2 Expenses and Loading for Expenses

Expenses can be classified into three main groups.

1. Acquisition expenses. In this group, all expenses connected with the issue of a
new policy are included, in particular

a. agents’ commission;
b. medical examination (if any);
c. policy writing.



4.5 Loading for Expenses 267

Acquisition expenses then constitute an initial cost to the insurer.
2. Collection expenses. These expenses are charged at the beginning of every period

(every year, in particular) in which a periodic premium (for example, a level
premium) is to be collected.

3. General administration expenses. All other insurer’s expenses (not directly con-
nected with the policy) are included in this group, for example, wages, data
processing costs, investment costs, taxes, and so on. A share of these expenses is
attributed to each policy, for the whole policy duration.

As regards the loading of premiums, we will focus on two premium arrangements,
namely the single premium and the level premiums.

• Single premium

1. Acquisition expenses are loaded on the single premium itself.
2. Of course, collection expenses do not concern this premium arrangement.
3. The expected present value of future administration expenses attributed to the

contract is loaded on the premium.

• Level premiums

1. Although acquisition expenses constitute an initial cost to the insurer, the loading
for these expenses is split into a sequence of annual amounts, each one loaded on
the related premium. Hence, acquisition expenses are progressively recovered.

2. Collection expenses are loaded year by year on the relevant annual premium.
3. As administration expenses are attributed to the policy for the whole policy

duration, if premiums are payable for the same duration, then each premium is
loaded with the annual share of expenses; conversely, if the premium payment
period is shorter, then a higher share is loaded on each premium.

4.5.3 The Expense-Loaded Premiums

Let Π [T] and P[T] denote the single premium and the annual level premium (omitting
for brevity the duration of premium payment), respectively, loaded for expenses. Let
[A], [C], and [G] denote the three groups of expenses, namely acquisition, collection,
and general administration expenses, respectively.

For the single premium, we have

Π [T] = Π + Θ [A] + Θ [G] (4.5.1)

where Θ [A], Θ [G] denote the two loading terms. The annual level premium is given
by the following expression:

P[T] = P + Λ[A] + Λ[C] + Λ[G] (4.5.2)
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where Λ[A], Λ[C], and Λ[G] denote the three loading terms.
We adopt, as the calculation principle, the equivalence principle, applied to each

expense component and the corresponding premium loadings; hence,

Actuarial value of the loadings = Actuarial value of the expenses
(4.5.3)

In the case of single premium, the actuarial value of the loadings is simply given by
the loading amount charged on the single premium itself.

Remark We assume that the expenses accounted for when calculating the loadings coincide with
the actual expense expectations. Hence, the loading for expenses does not generate any expected
profit. More general assumptions will be adopted in Sect. 6.4, in the framework of life insurance
portfolio analysis.

We now address an insurance contract with sum insured C, duration m, either
single premium or annual level premiums payable for s years (s ≤ m). Arguments
similar to the following ones apply to life annuities.

The acquisition expenses are usually assumed proportional to the sum insured.
Denoting by α the corresponding rate, we have for the related loadings

Θ [A] = α C (4.5.4a)

Λ[A] ä′
x:s� = α C (4.5.4b)

in the case of single premium and level premiums, respectively.
The collection expenses are usually assumed to be proportional to the expense-

loaded premium, at a rate we denote by β. Hence, the related loading is given by

Λ[C] = β P[T] (4.5.5)

The annual general administration expenses are commonly expressed as a pro-
portion of the sum insured. Denoting by γ the corresponding rate, we have for the
related loadings:

Θ [G] = γ C ä′
x:m� (4.5.6a)

Λ[G] ä′
x:s� = γ C ä′

x:m� (4.5.6b)

Of course, ä′
x:m� must be replaced by ä′

x in the case of a whole life insurance.
Alternative arrangements can be adopted for expressing the acquisition expenses

and the general administration expenses. We only address the acquisition expenses,
which can be assumed proportional to the amount of the expense-loaded premium.
The loading rate then depends on the number s of level premiums. Denoting by δ(s)

http://dx.doi.org/10.1007/978-3-319-21377-4_6
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the corresponding rate, usually increasing as s increases (for a given policy duration
m), we have

Θ [A] = δ(1)Π [T] (4.5.7a)

Λ[A] ä′
x:s� = δ(s) P[T] (4.5.7b)

To illustrate the calculation of an expense-loaded annual level premium, we first
refer to a whole life insurance, with premiums payable for s years, sum assured C,
age at policy issue x, and loading rate α for the acquisition expenses. The expense-
loaded premium P[T] is given by Eq. (4.5.2). From Eq. (4.4.26) as regards the net
premium P(s), and Eqs. (4.5.4b), (4.5.5), and (4.5.6b) as regards the loadings, we
obtain

P[T] =
C

ä′
x:s�

(
A′

x + α + γ ä′
x

)
1 − β

(4.5.8)

We now refer to an endowment insurance, with duration m years, and level pre-
miums payable for the whole policy duration. We assume the loading rate δ(s) for
acquisition expenses. From Eq. (4.4.24) as regards the net premium, and Eqs. (4.5.7b),
(4.5.5), and (4.5.6b) as regards the loadings (with s = m in all the equations), we
find

P[T] =
C

(
A′

x,m�
ä′

x:m�
+ γ

)

1 − β − δ(m)

ä′
x:m�

(4.5.9)

To assess the incidence of costs other than the expected present value of benefits,
it is interesting to determine the total expense loading rate. In the case of a single
premium, the total loading rate, θ , is given by

θ = Π [T] − Π

Π [T] = Θ [A] + Θ [G]

Π [T] (4.5.10)

Conversely, in the case of annual level premiums, the total loading rate, λ, is given by

λ = P[T] − P

P[T] = Λ[A] + Λ[C] + Λ[G]

P[T] (4.5.11)

Example 4.5.1 Consider a whole life insurance. Data are as follows: C = 1 000,
x = 50, s = 15. The pricing basis is TB1 = (0.02, LT1). Assume, as the loading
parameters: α = 0.02, β = 0.04, γ = 0.001. We find

P = 44.90

P[T] = 49.47
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as the net premium and the expense-loaded premium, respectively. The total loading
rate is then

λ = 0.0922

❑

Example 4.5.2 Refer to an endowment insurance. Data are as follows: C = 1 000,
x = 50, m = s = 15. The pricing basis is TB1 = (0.02, LT1). Assume, as the loading
parameters, δ(15) = 0.55, β = 0.04, γ = 0.0015. We find

P = 59.54

P[T] = 66.60

as the net premium and the expense-loaded premium, respectively. The total loading
rate is then

λ = 0.1061

❑

4.6 References and Suggestions for Further Reading

A number of actuarial textbooks deal with technical and financial aspects of life
insurance, and with pricing problems in particular. We quote the following ones:
Bowers et al. (1997), Dickson et al. (2013), Gerber (1995), Gupta and Varga (2002),
Norberg (2002), Promislow (2006), and Rotar (2007); an advanced mathematical
approach is adopted by Koller (2012).

The book by Milevsky (2006) is specifically devoted to life annuities and pen-
sions. Conversely, a wide range of insurance products in the field of life (and health)
insurance are described by Black and Skipper (2000).

We mention Haberman (1996) for historical remarks on the development of actu-
arial science, including contributions to the life insurance mathematics and technique.

The framework of life insurance can be enlarged to include products in which
benefits depend not only on the insured’s lifetime but also, for example, on his/her
health status. Health insurance products, and the basic actuarial models for sickness
insurance and disability insurance are dealt with by Pitacco (2014). For a more for-
mal and detailed presentation of technical aspects of disability annuities and related
products, the reader can refer to Haberman and Pitacco (1999).

Finally, we recall that the principles of Financial Mathematics (which underpin
the calculation of actuarial values) are presented by Broverman (2008), Vaaler and
Daniel (2007), and in the first five chapters of Luenberger (1998).



Chapter 5
Life Insurance: Reserving

5.1 Introduction

The insurer’s debt position, which is an obvious implication of the single-premium
arrangement, must be realized also when other premium arrangements are adopted.
This need clearly emerged in Sect. 4.4.1. We recall that an asset accumulation–
decumulation process develops, throughout the policy duration, against the insurer’s
debt position. A technical tool for assessing the insurer’s debt is provided by the
so-called mathematical reserve.

The need for assessing the insurer’s position with respect to an insurance policy
emerges at any time during the policy duration. In particular, we can recognize:

• “ordinary” needs which emerge, for example, in relation to:

– the balance sheet, which must display the total insurer’s debt toward the poli-
cyholders;

– the sharing of profits with the policyholders, which, in particular, can be related
to the proportion of assets contributed by each policy;

• “extraordinary” needs, related for example to the interruption of periodic premium
payment, and hence the need for assessing the policyholder’s credit and then

– converting the policy into a “paid-up” one, namely a policy for which no further
premium payment is required;

– determining the amount to be paid by the insurer in the case of “surrender”.

5.2 General Aspects

We refer to a generic insurance policy, and focus on benefits and net premiums only.
That is, we start disregarding expenses and related expense loadings. We assume that
the policy term is m, but a generalization to lifelong policies is straightforward, by
setting m = ω − x (where ω denotes as usual the maximum attainable age).
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Let t1, t2 denote two integer times (policy anniversaries), with 0 ≤ t1 < t2 ≤ m.
We define the following notation which proves to be useful when dealing with the
definition of the mathematical reserve:

• Y (t1, t2) denotes the random present value at time t1 of the benefits which fall due
in the time interval (t1, t2);

• X (t1, t2) denotes the random present value at time t1 of the premiums to be cashed
in the time interval (t1, t2).

Remark 1 The notation just defined generalizes the one we used in Chap. 4 to denote the random
present values of benefits and premiums. Indeed, Y = Y (0, m) and X = X (0, m).

Then, we define:

• Ben(t1, t2) = E[Y (t1, t2)], i.e., the expected present value (or actuarial value) at
time t1 of the benefits which fall due in the time interval (t1, t2);

• Prem(t1, t2) = E[X (t1, t2)], i.e., the expected present value (or actuarial value) at
time t1 of the premiums to be cashed in the time interval (t1, t2).

Remark 2 It is worth commenting in some detail which of the benefits and premiums paid at the
extremes of the time interval (t1, t2), i.e., at times t1 and t2, are included in the quantities Y (t1, t2)
and Ben(t1, t2) (for benefits), X (t1, t2) and Prem(t1, t2) (for premiums).

In general terms, if an amount is paid at a given time t because it is due at the beginning
of year (t, t + 1), we say that it is paid at time t in advance. Conversely, if it is paid at time t
because due at the end of year (t − 1, t), then we say that it is paid at time t in arrears. The rule
we adopt when defining the flows included in the quantities Y (t1, t2), Ben(t1, t2), X (t1, t2), and
Prem(t1, t2) is the following. Premiums and benefits paid at time t1 in advance are included, while
benefits paid at time t1 in arrears are excluded. Benefits paid at time t2 in arrears are included, while
premiums and benefits paid at time t2 in advance are excluded. Actually, the time interval addressed
by the quantities Y (t1, t2), Ben(t1, t2), X (t1, t2), and Prem(t1, t2) runs from the beginning of year
(t1, t1 +1) to the end of year (t2 −1, t2). Of course, all the flows falling due at a time t , t1 < t < t2,
are included in such quantities. The rule will clearly emerge in Example 5.2.1, as well as in the
following sections.

We now assume that the actuarial values rely on the first-order basis, i.e., the
pricing basis TB1. The notations Ben′ and Prem′ reflect this hypothesis.

It is well known that the equivalence principle requires

Prem′(0, m) = Ben′(0, m) (5.2.1)

On the contrary, all the following situations may occur, at least in principle, when
intervals shorter than the whole policy duration are referred to:

Prem′(0, t) � Ben′(0, t) (5.2.2a)

Prem′(t, m) � Ben′(t, m) (5.2.2b)

(we recall that t is an integer time).

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Further, we can find:

Prem′(t, t + 1) � Ben′(t, t + 1) (5.2.3)

where the term on the left-hand side denotes, for example, the annual level premium,
whereas the term on the right-hand side denotes the natural premium.

Example 5.2.1 Consider a m-year term insurance, providing a unitary benefit (that
is, C = 1), with single premium Π , or annual level premiums P payable for the
whole policy duration. We have:

Ben′(0, m) = m A′
x

Prem′(0, m) =
{

Π in the case of single premium

P ä′
x :m� in the case of annual level premiums

For t = 1, 2, . . . , m − 1, we have:

Ben′(t, m) = m−t A′
x+t

Prem′(t, m) =
{

0 in the case of single premium

P ä′
x+t :m−t� in the case of annual level premiums

Further, for t = 0, 1, . . . , m − 1, we have:

Ben′(t, t + 1) = 1 A′
x+t = P [N]

t

Prem′(t, t + 1) =

⎧⎪⎨
⎪⎩

Π in the case of single premium, if t = 0

0 in the case of single premium, if t ≥ 1

P in the case of annual level premiums

❑

5.3 The Policy Reserve

5.3.1 Definition

Refer to the time interval (t, m), with t = 0, 1, . . . , m; let Vt denote the quantity
such that:

Prem′(t, m) + Vt = Ben′(t, m) (5.3.1)
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Clearly, from Eq. (5.2.1) we obtain

V0 = 0 (5.3.2)

Conversely, for t > 0, the amount Vt fulfills the equivalence principle given that
only “residual” benefits and premiums are referred to.

We note that if Ben′(t, m) > Prem′(t, m), then the insurer is in a debt position.
Hence, the financing condition can be simply expressed by the inequality Vt ≥ 0
which means no credit position. From Eq. (5.3.1) we also note that, if Ben′(t, m) >

Prem′(t, m), the amount Vt together with the future premiums exactly meets the
future benefits.

The quantity
Vt = Ben′(t, m) − Prem′(t, m) (5.3.3)

is called the prospective net reserve. The adjective “prospective” denotes that the
reserve refers to the “future” time interval, namely from time t onwards (the retro-
spective reserve will be shortly addressed in Sect. 5.3.6), whereas “net” recalls that
we are not allowing for expenses and related loadings. Of course, the reserve we
have defined is a policy reserve, as it refers to an insurance contract (the portfolio
reserve will be dealt with in Sect. 6.1). The expression mathematical reserve is also
used.

As already mentioned, the reserve, defined by (5.3.3), is assessed adopting the
pricing basis TB1. Hence, it can be considered a prudential valuation of the insurer’s
debt. However, as the pricing basis leads to an implicit safety loading, the “degree” of
prudence cannot be easily determined. An explicit approach to a safe-side assessment
of the reserve will be presented in Sects. 6.1.2 and 6.1.3.

5.3.2 The Policy Reserve for Some Insurance Products

The following examples are straightforward applications of formula (5.3.3), which
defines the reserve. If not otherwise stated, we assume unitary benefits. We first
consider insurance products financed by annual level premiums. It is understood
that, for each product, the premium P must rely on the appropriate formula (see
Sect. 4.4.2).

For a whole life insurance, with lifelong premiums, we find:

Vt = A′
x+t − P ä′

x+t (5.3.4)

In the case of s-year temporary premiums, we have:

Vt =
{

A′
x+t − P(s) ä′

x+t :s−t� if t < s

A′
x+t if t ≥ s

(5.3.5)

http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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The reserve of a term insurance, with premiums payable for the whole policy
duration, is given by:

Vt = m−t A′
x+t − P ä′

x+t :m−t� (5.3.6)

For a pure endowment insurance, we have:

Vt = m−t E ′
x+t − P ä′

x+t :m−t� (5.3.7)

and for an endowment insurance:

Vt = A′
x+t,m−t� − P ä′

x+t :m−t� (5.3.8)

We now address, for t > 0, insurance products financed by a single premium. For
a pure endowment insurance, we have:

Vt = m−t E ′
x+t (5.3.9)

whereas for an immediate life annuity in advance, we find:

Vt = ä′
x+t (5.3.10)

When a premium arrangement based on single-recurrent premiums is adopted,
the reserve can be easily determined via iterated application of the single-premium
reserve formula. For example, consider a pure endowment insurance, and assume
that, at time t , the amounts �S0,�S1, . . . �St−1 have been financed according to the
scheme presented in Sect. 4.4.5 (see relations (4.4.36)). The sum insured cumulated
up to time t is then St . Hence, the reserve is given by

Vt = m−t E ′
x+t

t−1∑
h=0

�Sh = St m−t E ′
x+t (5.3.11)

In a whole life insurance, the sum assured cumulated up to time t is Ct . Then, we
find:

Vt = A′
x+t

t−1∑
h=0

�Ch = Ct A′
x+t (5.3.12)

In particular, if i ′ = 0 we have (see (4.4.39)):

Vt =
t−1∑
h=0

Πh (5.3.13)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Remark We note that, although the arrangement based on single-recurrent premiums falls in
the category of periodic premium arrangements, a reserve formula similar to (5.3.7) (for the pure
endowment insurance) or (5.3.5) (for the whole life insurance) cannot be adopted because the
amount of premiums payable from time t onwards is, at least in principle, unknown.

5.3.3 The Time Profile of the Policy Reserve

The policy reserve, Vt , is a function of time t . When analyzing its behavior against
time, we assume that the insured is alive at time t .

As we have so far assumed that the reserve is calculated by adopting the pricing
basis, the reserve itself at the policy issue, namely at time t = 0, is equal to zero,
whatever the premium arrangement (see (5.2.1) and (5.3.2)). However, in the case
of a single premium, Π , it is usual to focus on the reserve immediately after cashing
the premium itself, denoted by V0+ , hence setting:

V0+ = V0 + Π = Π (5.3.14)

As regards the value of the reserve at maturity, i.e., at time m, for a term insurance
we clearly have:

Vm = 0 (5.3.15)

Conversely, for a pure endowment and an endowment insurance with a unitary
amount as the benefit in case of survival, we find:

Vm = 1 (5.3.16)

We now move to the time profile for t = 1, 2, . . . (thus, restricting the analysis at
the policy anniversaries). Since we have chosen numerical life tables (the input of the
calculation procedures), although derived from an analytical model (the Heligman–
Pollard law), to express mortality assumptions, the time profile of the reserve (the
output) can only be analyzed in numerical terms. Notwithstanding, some arguments
emerging from the numerical inspection have a wide range of application. A number
of examples follow.

Example 5.3.1 The reserve of a single-premium term insurance is plotted in Fig. 5.1,
whereas the case of annual level premium is referred to in Fig. 5.2. In both the cases,
data are as follows: sum assured C = 1 000, x = 40, m = 10; the pricing basis is
TB1 = (0.02, LT1).

In Fig. 5.3, the reserves corresponding to various ages at entry are plotted. The
other data are unchanged. Conversely, Fig. 5.4 displays the reserves related to various
policy durations, age x = 40. ❑
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Fig. 5.1 Term insurance;
single premium
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Fig. 5.2 Term insurance;
annual level premiums
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Fig. 5.3 Term insurances,
with various ages at entry;
annual level premiums
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The following features of the reserve of the term insurance should be pointed out.

• The reserve is, in any case, very small if compared to the sum assured.
• In the case of a single premium, the premium itself is progressively used according

to the mutuality mechanism working in the insurer’s portfolio, and hence the
reserve decreases throughout the policy duration.



278 5 Life Insurance: Reserving

Fig. 5.4 Term insurances,
with various durations;
annual level premiums
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• In the case of annual level premiums, the reserve initially grows, since the level
premium slightly exceeds the corresponding natural premium (see Sect. 4.4.3, and
Example 4.4.3 in particular), then it decreases and is equal to zero at the end,
because the insurer has no obligation if the insured is alive at maturity.

• Still in the case of annual level premiums, the reserve profile is higher when the age
at entry is higher, for a given policy term; this can be explained in terms of variation
of the natural premiums throughout the policy duration (again, see Sect. 4.4.3, and
Example 4.4.3; see also Fig. 5.5, in which the solid horizontal lines represent the
amount of the level premium for initial ages x ′ and x ′′, respectively). A similar
argument explains the higher values of the reserve, for a given age at policy issue,
when the policy term is greater.

Figure 5.6 explains the variation (either positive or negative) in the reserve value,
in the case of annual premiums.

Example 5.3.2 We refer to a decreasing term insurance (see Sect. 4.3.4). Data are
as follows: x = 40, m = 10, TB1 = (0.02, LT1). The sums assured are given by

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Fig. 5.6 Annual variations
in the reserve of a term
insurance (annual level
premiums)

time

re
se

rv
e

Vt+1 - Vt

+ PREMIUM

+ INTEREST

- MUTUALITY

Fig. 5.7 Decreasing term
insurance; single premium
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Fig. 5.8 Decreasing term
insurance; annual level
premiums
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Ch+1 = 10−h
10 1 000, h = 0, 1, . . . , 9. The reserve profile in the case of a single

premium is plotted in Fig. 5.7. Conversely, Fig. 5.8 displays the reserve in the case
of annual level premiums payable for the whole policy duration. The violation of
the financing condition is apparent. Shortening the premium payment period leads
to the reserve profiles plotted in Figs. 5.9 and 5.10. In particular, the former shows
an insufficient shortening (s = 8), whereas the latter displays a feasible arrangement
(s = 7). ❑
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Fig. 5.9 Decreasing term
insurance; shortened annual
level premiums (s = 8)

-1.5

0.5

2.5

4.5

6.5

8.5

0 2 4 6 8 10

Policy anniversary

R
es

er
ve

Fig. 5.10 Decreasing term
insurance; shortened annual
level premiums (s = 7)
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Fig. 5.11 Pure endowment;
single premium
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Example 5.3.3 The reserve of a single-premium pure endowment is plotted in
Fig. 5.11, whereas the case of annual level premium is referred to in Fig. 5.12. In
both the cases, data are as follows: sum assured C = 1 000, x = 40, m = 10,
TB1 = (0.02, LT1). ❑

The reserve of a pure endowment is increasing throughout the whole policy dura-
tion. Figure 5.13 shows the causes of annual increments in the reserve, in the case
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Fig. 5.12 Pure endowment;
annual level premiums
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Fig. 5.13 Annual variation
in the reserve of a pure
endowment (annual level
premiums)
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of annual premiums. In particular, we recall that each individual reserve is annually
credited with a share of reserves released by the insureds who died in that year (see
also Case 4a in Sect. 1.7.4, and Fig. 1.24 in particular).

Example 5.3.4 Figures 5.14 and 5.15 refer to an endowment insurance, with single
premium and annual level premiums, respectively. Data are as for the pure endow-
ment. ❑

The time profile of the reserve of an endowment insurance almost coincides with
that of a pure endowment. In fact, the difference between the two reserves is the
reserve of a term insurance (assuming that the same technical basis is adopted in the
three insurance products), and hence it is very small, as already noted. It is worth
noting, however, that the rationale underlying the annual variations in the reserve of
an endowment insurance is quite different. Indeed, the payment of death benefits to
insureds who die implies that shares of each individual reserve are annually subtracted
from the reserve itself. See Fig. 5.16, in which the mutuality effect works in a negative
sense with respect to insureds who are still alive.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 5.14 Endowment
insurance; single premium
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Fig. 5.15 Endowment
insurance; annual level
premiums
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Fig. 5.16 Annual variation
in the reserve of an
endowment insurance
(annual level premiums)
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Example 5.3.5 Figures 5.17 and 5.18 refer to a whole life insurance, with single
premium and annual level premiums payable for s = 20 years, respectively. Data
are as follows: C = 1 000, x = 50, TB1 = (0.02, LT1). ❑

The time profile of the reserve of a whole life insurance is increasing, in both the
case of single premium and annual level premiums, and tends to the sum assured C .
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Fig. 5.17 Whole life
insurance; single premium

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

Policy anniversary

R
es

er
ve

Fig. 5.18 Whole life
insurance; temporary annual
level premiums

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60
Policy anniversary

R
es

er
ve

Fig. 5.19 Single-premium
life annuity
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In the case of annual premiums, we note that, when all the premiums have been paid,
the behavior of the reserve coincides with that of the single-premium reserve.

Example 5.3.6 The reserve of a single-premium immediate life annuity (in arrears)
is plotted in Fig. 5.19. Data are as follows: b = 100, x = 65, TB1 = (0.02, LT4).
Conversely, Fig. 5.20 shows the time profile of a fund (whose initial amount is equal
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Fig. 5.20 Withdrawal
process
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to the single premium of the immediate life annuity), from which the annual amount
b = 100 is withdrawn; the interest rate is 0.02. The withdrawal process exhausts the
fund in 21 years. On this aspect, see Sect. 1.2.5, Case 4c. ❑

The reserve of an immediate life annuity is decreasing throughout the whole
policy duration. Figure 5.21 shows the causes of annual decrements in the reserve.
We note, in particular, that the mutuality mechanism works as in the pure endowment.
Of course, no mutuality mechanism works in the withdrawal process (see Fig. 1.3).
The presence of the mutuality mechanism in the life annuity explains the substantial
difference between the time profiles shown in Figs. 5.19 and 5.20, respectively.

5.3.4 Change in the Technical Basis

In some circumstances, the reserve must be calculated by adopting a technical basis
(called the reserving basis, or valuation basis) other than the pricing basis used for
determining the premiums. Such a need can arise, for example, because:

• a “realistic” assessment of the insurer’s debt is required, in order to single out the
safety component included in the reserve;

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1


5.3 The Policy Reserve 285

• an important change in the financial or biometric scenario makes the reserve
(assessed according to the pricing basis) either no longer prudential, or conversely
too high.

The former issue will be addressed in Sect. 6.1.3; how to allow for the consequences
of a change in the scenario is the topic of the present section.

Assume that a significant change in the scenario is accounted for when assessing
the reserves. This change can be due, for example, to an important variation observed
in the mortality, or to different forecasts about the return on investments. The con-
sequent variation in the reserve (when positive) can constitute a compulsory action,
imposed by the supervisory authority.

Figure 5.22 sketches the consequences of a change in the scenario. First, the
new scenario is expressed by an updated second-order basis, TB2∗, which, in its
turn, suggests the adoption of a new first-order basis, TB1∗. This basis will be used
as a pricing basis, and hence adopted in pricing as well as reserving, for policies
written after the scenario change. Conversely, premiums of in-force policies cannot
be changed, since policy conditions are guaranteed at the policy issue. Thus, for these
policies, the basis TB1∗ is only used to update the reserves.

Several approaches to the reserve updating are available, at least in principle. We
focus on some approaches, referring to an endowment insurance with annual level
premiums payable for the whole policy duration. As usual, x denotes the insured’s
age at policy issue, m the duration, C the sum insured in both the cases of death and
survival. We assume that the shift in the technical basis occurs at time τ ; the updated
reserve will be denoted with V [u]

t , for t ≥ τ . Further, we assume that the shift implies
an increase in the reserve; hence, V [u]

τ > Vτ .
The updated reserve is defined as the amount that, at time τ , together with the

actuarial value of the future premiums (whose amount P has been stated at policy
issue), meets (according to the equivalence principle) the actuarial value of the future
benefits; both the actuarial values rely on the new basis TB1∗. In formal terms:

V [u]
τ + P ä∗

x+τ :m−τ� = CA∗
x+τ,m−τ� (5.3.17)

Fig. 5.22 Shift to new
technical bases because of a
change in scenario TB2

TB1

Premiums,
Reserves

change in
scenario

TB2*

TB1*

NEW POLICIES:
Premiums, Reserves

IN-FORCE POLICIES:
Reserves

http://dx.doi.org/10.1007/978-3-319-21377-4_6
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In more general terms, the equivalence principle requires that the following con-
dition is fulfilled:

(Vτ + �Vτ ) + (P + �P) ä∗
x+τ :m−τ� = CA∗

x+τ,m−τ� (5.3.18)

Condition (5.3.18) is an equation in the two unknowns �Vτ and �P . Particular
solutions of (5.3.18) suggest practicable approaches to the updating problem. It is
understood that, whatever is the particular solution chosen, the insurer is charged
with both amounts �Vτ and �P .

1. Set
�Vτ = V [u]

τ − Vτ (5.3.19)

and hence �P = 0; Eq. (5.3.18) reduces to (5.3.17). This approach implies an
immediate rise in the reserve (at time τ ) and hence turns out to be the most
prudential. For all integer t , t ≥ τ , we then have:

V [u]
t = CA∗

x+t,m−t� − P ä∗
x+t :m−t� (5.3.20)

2. Less prudential approaches consist in a lower rise, �Vτ , in the reserve, that is

0 < �Vτ < V [u]
τ − Vτ (5.3.21)

followed by premium integrations (“paid” by the insurer), �P , which amortize
the missing share of the required increment in the reserve, namely the amount
V [u]

τ − (Vτ + �Vτ ). A particular approach in this category can be of prominent
practical interest. Let P∗ denote the annual premium according to the pricing
basis TB1∗, namely the premium such that P∗ ä∗

x :m� = CA∗
x,m�. Then, set

�P = P∗ − P (5.3.22)

From (5.3.18), it follows:

�Vτ = CA∗
x+τ,m−τ� − P∗ ä∗

x+τ :m−τ� − Vτ (5.3.23)

It is worth noting that the resulting reserve, Vτ +�Vτ , coincides with the reserve,
V ∗

τ = CA∗
x+τ,m−τ� − P∗ ä∗

x+τ :m−τ�, which will pertain to new policies issued
according to the basis TB1∗. Hence, the advantage of this particular approach con-
sists in a reserve accumulation process coinciding with that for the new policies.
For all integer t , t ≥ τ , we then have:

V ∗
t = CA∗

x+t,m−t� − P∗ä∗
x+t :m−t� (5.3.24)

3. Set �Vτ = 0; hence, from (5.3.18) we obtain:
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Fig. 5.23 Updating the reserve because of a shift in the technical basis

�P = CA∗
x+τ,m−τ� − P ä∗

x+τ :m−τ� − Vτ

ä∗
x+τ :m−τ�

= V [u]
τ − Vτ

ä∗
x+τ :m−τ�

(5.3.25)

Thus, the whole required update in the reserve, that is V [u]
τ − Vτ , is amortized in

m − τ years. For all integer t , t ≥ τ , denoting with Ṽt the resulting reserve, we
then have:

Ṽt = CA∗
x+t,m−t� − (P + �P) ä∗

x+t :m−t� (5.3.26)

with �P given by (5.3.25). Clearly, this approach does not provide a prudential
solution.

The solutions we have described lead to the reserve profiles sketched in Fig. 5.23a
(for simplicity, the reserve profile is represented by a solid line, i.e., disregarding the
jumps corresponding to annual premiums).

Of course, other technical solutions are available, even outside the framework
designed by condition (5.3.18). We just mention the following one.

4. Set �Vτ = 0. Let
s = max{r − τ, 0} (5.3.27)

with r < m. Then, if s ≥ 1, set:

Q = V [u]
τ − Vτ

ä∗
x+τ :s�

(5.3.28)
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Table 5.1 Updating the reserve because of a shift in the technical basis

t Vt V [u]
t V ∗

t Ṽt

(1) (2) (3)

0 0.00

1 53.59

2 108.64

3 165.21

4 223.37

5 283.19

6 344.75

7 408.16

8 473.51 570.03 509.62 473.51

9 540.95 628.54 576.35 545.16

10 610.63 687.83 643.97 617.76

11 682.71 747.99 712.59 691.43

12 757.42 809.14 782.33 766.30

13 835.00 871.41 853.35 842.55

14 915.74 934.97 925.83 920.37

15 1 000.00 1 000.00 1 000.00 1 000.00

Of course, if s = 0 we simply have:

Q = V [u]
τ − Vτ (5.3.29)

Hence, the premium integration, Q, amortizes the required increase in the reserve
in a period shorter than the residual policy duration (see Fig. 5.23b).

Example 5.3.7 Refer to an endowment insurance with annual level premiums
payable for the whole policy duration. Data are as follows: C = 1 000, x = 50,
m = 15, TB1 = (0.03, LT1). The resulting annual premium is P = 55.13. At
time τ = 8, because of a decrease in interest rates, the technical basis shifts to
TB1∗ = (0.01, LT1). The resulting annual premium is P∗ = 64.27. Table 5.1 dis-
plays the reserve Vt which relies on the basis TB1, and the reserves V [u]

t , V ∗
t , and

Ṽt , calculated according to formulae (5.3.20), (5.3.24), and (5.3.26), respectively. ❑

5.3.5 The Reserve at Fractional Durations

The analysis of the time profile of the reserve has been so far restricted to the pol-
icy anniversaries, namely integer durations since the policy issue. The extension to
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fractional durations is, however, of practical interest. For example, the need for cal-
culating the policy reserve (and the portfolio reserve, as well) at times other than the
policy anniversaries arises when assessing the items of the balance sheet.

The calculation of the exact value of the policy reserve at all past durations can
be carried out in a time-continuous setting. In such a setting, a mortality law must
be available, instead of a numerical life table. In the actuarial practice, however, it
is rather common to work in a time-discrete framework (as we are actually doing)
and to obtain approximations to the exact value of the reserve via interpolation
procedures, in particular by adopting linear interpolation formulae. Here we illustrate
the interpolation approach, focussing on some examples.

Consider an insurance policy, for example, a term insurance, with premium
arrangement based on natural premiums. The reserve is, of course, equal to zero
at all the policy anniversaries, before cashing the premium which falls due at that
time; thus Vt = 0 for all integer t . Immediately after cashing the premium, the
insurer’s debt (and the corresponding asset) is clearly equal to the premium itself;
hence, denoting with Vt+ the reserve after cashing the premium, we have:

Vt+ = P [N]
t ; t = 0, 1, . . . (5.3.30)

Then, the premium is used throughout the year according to the mutuality mechanism
and, again, we have Vt+1 = 0. At time t + r , with 0 < r < 1, we let:

Vt+r = (1 − r) Vt+ = (1 − r) P [N]
t (5.3.31)

The resulting time profile of the reserve is plotted in Fig. 5.24.
As the second example, we refer to an insurance product (e.g., an endowment

insurance) with annual level premiums P . After cashing the premium which falls
due at time t , the reserve increases from Vt to

Vt+ = Vt + P (5.3.32)

Then, the linear interpolation yields:

Vt+r = (1 − r) Vt+ + r Vt+1 = [(1 − r) Vt + r Vt+1] + (1 − r) P (5.3.33)

Fig. 5.24 Interpolated
reserve profile in the case of
natural premiums re
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Fig. 5.25 Reserve
interpolation in the case of
annual level premiums
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Fig. 5.26 Interpolated
reserve profile in the case of
annual level premiums: an
example
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See Fig. 5.25. We note, in particular, the following aspects.

• Interpolating between Vt (instead of Vt+) and Vt+1 would cause an apparent under-
estimation of the reserve at all times between t and t + 1 (again, see Fig. 5.25).

• The “use” of the premium P depends on the specific insurance product addressed.
For example, if we consider an endowment insurance, the share of the premium
used to cover death benefits according to the mutuality mechanism is decreasing
throughout the policy duration (as we will see in Sect. 5.4.3); this fact determines
a time profile of the reserve like that plotted in Fig. 5.26.

As the third example, we consider an insurance product (for example, a term
insurance, or a pure endowment, or an endowment insurance), with a single premium
Π . In this case, there is no jump in the reserve profile, but at the payment of the single
premium, when the reserve jumps from V0 = 0 to V0+ = Π . Then, the interpolation
procedure is as follows:

Vr = (1 − r) V0+ + r V1 (5.3.34a)

Vt+r = (1 − r) Vt + r Vt+1 for t = 1, 2, . . . (5.3.34b)

See Fig. 5.27.
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Fig. 5.27 Interpolated
reserve profile in the case of
single premium: an example
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Finally, we refer to single-premium life annuities, providing an annual benefit b.
The jumps in the reserve profile correspond to the annual payments of the benefit,
as illustrated in Fig. 5.28. For a life annuity in arrears (panel (a)), taking as usual
V0+ = Π , the interpolation is as follows:

Vr = (1 − r) V0+ + r (V1 + b) (5.3.35a)

Vt+r = (1 − r) Vt + r (Vt+1 + b) for t = 1, 2, . . . (5.3.35b)

where Vt = a′
x+t . For a life annuity in advance (panel (b)), taking again V0+ = Π ,

the interpolation is as follows:

Vr = (1 − r) (V0+ − b) + r V1 (5.3.36a)

Vt+r = (1 − r) (Vt − b) + r Vt+1 for t = 1, 2, . . . (5.3.36b)

with Vt = ä′
x+t .
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Fig. 5.28 Interpolated reserve profile for life annuities
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5.3.6 The Retrospective Reserve

The (prospective) policy reserve has been defined as the balancing term, Vt , which
transforms inequality (5.2.2b) into relation (5.3.1). Looking at inequality (5.2.2a),
and hence referring to the time interval (0, t), we can define the so-called retrospective
reserve.

Let Bt denote the amount such that

Prem′(0, t) = Bt + Ben′(0, t) (5.3.37)

The amount Bt can be interpreted as the actuarial value (at the policy issue) of the
benefit that the insurer should pay at time t if the insured decides (at that time) to
abandon the contract, stopping the premium payment and renouncing all the benefits
which fall due after time t .

Clearly, this interpretation holds if Bt > 0, namely Prem′(0, t) > Ben′(0, t).
Actually, this inequality should be satisfied: indeed, if Bt > 0, then the insurer is in
a debt position and hence the financing condition is fulfilled.

The benefit, Wt , whose actuarial value at time t = 0 is given by Bt , is then defined
by the following relation:

Bt = Wt t E ′
x (5.3.38)

Hence, we find:

Wt = 1

t E ′
x

(
Prem′(0, t) − Ben′(0, t)

)
(5.3.39)

The quantity Wt is called the retrospective reserve. Note that the term 1
t E ′

x
, namely

the actuarial accumulation factor (see Sect. 4.2.10), plays the role of referring the
valuation at time t .

Remark The interpretation of Wt as the amount to be paid by the insurer in the case the policyholder
abandons the contract, although interesting under a theoretical perspective, requires in practice
various adjustments. For example, expenses should be accounted for, and penalties could be applied
in determining the amount paid by the insurer. We will return on these issues in Sect. 5.7.

The following examples are straightforward applications of formula (5.3.39),
which defines the retrospective reserve.

In insurance products which provide a death benefit (term insurance, whole life
insurance, and endowment insurance), the insurer’s liability is given by the coverage
of the death risk over the time interval (0, t). Thus, assuming a unitary benefit, and
annual level premiums payable throughout the whole policy duration, we have, for
all these products:

Wt = 1

t E ′
x

(
P ä′

x :t� − t A′
x

)
(5.3.40)

where P denotes the annual premium related to the specific product addressed.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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In a pure endowment with annual level premiums, we have:

Wt = 1

t E ′
x

P ä′
x :t� (5.3.41)

as this product does not provide any benefit in the time interval (0, t) (of course, if
t < m, where m denotes the policy term).

In the case of a single premium (given, according to the equivalence principle, by
the actuarial value of the benefits), we have for an endowment insurance:

Wt = 1

t E ′
x

(A′
x,m� − t A′

x ) (5.3.42)

Replacing A′
x,m� with A′

x or m A′
x , we have the retrospective reserve for the whole

life insurance and the term insurance, respectively.
For a single-premium pure endowment, we have:

Wt = 1

t E ′
x

m E ′
x (5.3.43)

Remark In spite of the adjective “retrospective,” the reserve we are dealing with cannot be
interpreted as an ex-post quantification of the “past” liabilities (namely, those preceding time t) of
the insurer and the insured. From (5.3.39), it is apparent that the calculation of the retrospective
reserve first relies on the valuation at time 0 of the benefits and premiums pertaining to the interval
(0, t) (and hence “future” with respect to time 0), and then on a valuation at time t via the actuarial
accumulation factor 1

t E ′
x

.

Let us go back to the reserve of the single-premium pure endowment (see (5.3.43)).
We note that, for this insurance product, the prospective reserve is given by Vt =
m−t E ′

x+t . Further, we have m E ′
x = t E ′

x m−t E ′
x+t (see (4.2.53)), and hence:

Wt = Vt (5.3.44)

thus, the prospective and the retrospective reserve coincide. Result (5.3.44) holds
under rather general conditions. This topic is beyond the scope of this chapter. So,
we will simply provide a further example, and some final remarks as well.

We refer to a whole life insurance, with annual level premium P payable for the
whole policy duration. The single premium is, of course, given by A′

x . The following
relations hold:

A′
x = t A′

x + t E ′
x A′

x+t (5.3.45a)

ä′
x = ä′

x :t� + t E ′
x ä′

x+t (5.3.45b)

P ä′
x = A′

x (5.3.45c)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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The prospective reserve for this insurance product is given by (5.3.4). By using
relations (5.3.45), we find:

Vt = A′
x − t A′

x

t E ′
x

− P
ä′

x − ä′
x :t�

t E ′
x

= 1

t E ′
x

(
P a′

x :t� − t A′
x

)
= Wt (5.3.46)

that is, the coincidence between the prospective and the retrospective reserves.
Whenever relations similar to those expressed by formulae (5.3.45) hold, we

have the coincidence between the two reserves, provided that the same technical
basis is used for both the reserves. However, relations of this type do not hold, for
example, in relation to some insurance products which provide benefits depending
on the lifetimes of more than one individual. In those products, the reserve at time t
depends on which insureds are alive at that time, i.e., on the “status” (either actual
or hypothetical) of the insured group, whereas the retrospective reserve, which first
requires a valuation at time 0, can only represent a weighted average of the “possible”
prospective reserves at time t .

5.3.7 The Actuarial Accumulation Process

To introduce some interesting relations between the reserving process and the pre-
mium flows, we will just refer to an example, provided by an m-year term insurance
with annual level premiums payable for the whole policy duration. We assume a
unitary sum insured.

The natural premiums of the term insurance are expressed by (4.4.27), namely
P [N]

h = 1 A′
x+h = (1 + i ′)−1 q ′

x+h , for h = 0, 1, . . . , m − 1. The reserve premiums,

P [AS]
h , are defined by (4.4.35).

Consider the actuarial value at the policy issue of the reserve premiums pertaining
to the first t policy years. This value is given by:

t−1∑
h=0

P [AS]
h h E ′

x = P
t−1∑
h=0

h E ′
x −

t−1∑
h=0

1 A′
x+h h E ′

x (5.3.47)

From the following relations:

t−1∑
h=0

h E ′
x = ä′

x :t� (5.3.48a)

t−1∑
h=0

1 A′
x+h h E ′

x = t A′
x (5.3.48b)

we then find that the actuarial value of the reserve premiums can be expressed as
follows:

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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P ä′
x :t� − t A′

x = t E ′
x Wt (5.3.49)

(see also (5.3.40)). Finally, we obtain:

Wt = 1

t E ′
x

t−1∑
h=0

P [AS]
h h E ′

x =
t−1∑
h=0

P [AS]
h

1

t−h E ′
x+h

(5.3.50)

Thus, the retrospective reserve is the result of the actuarial accumulation of the
reserve premiums pertaining to the policy years preceding the time of valuation of
the reserve itself. From a more practical perspective, we can say that the retrospective
reserve originates thanks to the accumulation of assets exceeding the benefits.

On the one hand, the interpretation relying on the actuarial accumulation of the
reserve premiums can be useful in understanding the time profile of the reserve (see
Sect. 5.3.3). On the other hand, a different splitting of the annual premium allows
us to interpret the policy reserve as the result of a purely financial accumulation
process. As we will see in Sect. 5.4, this alternative splitting of the annual premiums
is of paramount importance in interpreting the intermediation role of a life insurer.

We just mention that, conversely, the prospective reserve at time t can be expressed
as minus the actuarial value (at that time) of the future reserve premiums, namely:

Vt = −
m−t−1∑

h=0

P [AS]
t+h h E ′

x+t (5.3.51)

5.4 Risk and Savings

The first topic addressed in this section relates to recursive procedures for the cal-
culation of the policy reserve. Nonetheless, the practical interest of the topic goes
well beyond computational aspects. In fact, the topic itself constitutes the starting
point for an in depth analysis of the role of a life insurance company. In particular,
technical aspects will emerge, concerning the life insurer as a player in both the
financial intermediation and the risk pooling process.

5.4.1 A (Rather) General Insurance Product

We refer to an insurance product, with the following characteristics: term m, age at
policy issue x , sum insured in the case of death C , sum insured in the case of survival
at maturity S, annual level premiums, P , payable for the whole policy duration, and
hence given by:
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P = C m A′
x + S m E ′

x

ä′
x :m�

(5.4.1)

For example,

• setting S = 0, C > 0, we have the term insurance, with constant sum assured;
• setting S > 0, C = 0, we find the pure endowment;
• setting S = C > 0, we have the (standard) endowment insurance;
• setting S > C > 0, we have the endowment insurance with additional survival

benefit.

A number of possible generalizations allow us to recognize other insurance prod-
ucts. For example,

• setting S = 0, C > 0, m = ω − x , we find the whole life insurance;
• setting S = 0, and replacing C with a sequence C1, C2, . . . , Cm , we have the term

insurance with varying benefit, and, in particular, the decreasing term insurance;
• replacing P with a sequence P0, P1, . . . , Pm−1, we can represent arrangements

based on variable premiums; in particular:

– with P0 = P1 = · · · = Ps−1, Ps = Ps+1 = · · · = Pm−1 = 0, we have
arrangements based on level premiums payable over a shortened period (s < m);

– setting P0 > 0, P1 = P2 = · · · = Pm−1 = 0, we represent the single-premium
arrangement;

– the natural premium arrangement is obviously represented by setting Ph = P [N]
h ,

for h = 0, 1, . . . , m − 1.

Other generalizations allow us to represent various types of life annuities. Notwith-
standing, in what follows we refer to the insurance product defined at the beginning
of this section.

5.4.2 Recursive Equations

The policy reserve, at time t , of the insurance product defined above is given by:

Vt = Ben′(t, m)− Prem′(t, m) = C m−t A′
x+t + S m−t E ′

x+t − P ä′
x+t :m−t� (5.4.2)

We can also write:

Vt = C 1 A′
x+t − P + C 1|m−t−1 A′

x+t + S m−t E ′
x+t − P 1|ä′

x+t :m−t−1� (5.4.3)

and, after a little algebra, we get to the following expression:

Vt + P = C 1 A′
x+t + Vt+1 1 E ′

x+t (5.4.4)
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Fig. 5.29 Recursive equations: interpretations

or, in more explicit terms:

Vt + P = C (1 + i ′)−1 q ′
x+t + Vt+1 (1 + i ′)−1 p′

x+t (5.4.5)

Recursive Eq. (5.4.5) is called the Fouret equation (1891). We note the following
features.

• Actuarial values in (5.4.5) are referred at time t , as both the financial and the
probabilistic evaluation are referred at that time (that is, the insured is assumed to
be alive at time t).

• Equation (5.4.5) describes an “equilibrium” situation in the time interval (t, t + 1):
the assets available at time t (the reserve Vt and the premium P just cashed) exactly
meet the liabilities which fall due at time t + 1, namely:

– the sum assured C , in the case of death;
– the reserve Vt+1, which is needed either to continue the policy in the case of

survival (if t + 1 < m), or to be paid as sum S at maturity (if t + 1 = m)

(see Fig. 5.29, upper panel).
• The policy reserve can be calculated by an iterative application of (5.4.5): start-

ing from V0 = 0, the equation allows us to calculate V1, V2, . . . , Vm (with the
“final” check Vm = S); conversely, starting from Vm = S, we can calculate
Vm−1, Vm−2, . . . , V0 (with V0 = 0).

Alternative expressions of (5.4.5) are the following ones:
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(Vt + P) (1 + i ′) = Cq′
x+t + Vt+1 p′

x+t (5.4.6)

Vt + P = (C − Vt+1) (1 + i ′)−1 q ′
x+t + Vt+1 (1 + i ′)−1 (5.4.7)

(Vt + P) (1 + i ′) = (C − Vt+1) q ′
x+t + Vt+1 (5.4.8)

We note the following aspects.

• In Eqs. (5.4.6) and (5.4.8) (called the Kanner equation, 1869), the financial evalu-
ation is referred to time t + 1 (whereas the probabilistic evaluation is still referred
to time t).

• In Eqs. (5.4.7) and (5.4.8), the reserve Vt+1 appears as a liability certain at time
t + 1 (that is, in both the cases of death and survival), whereas the death benefit
(if any) is split into two shares,

C = (C − Vt+1) + Vt+1 (5.4.9)

namely:

– the amount C − Vt+1, which is called the sum at risk (or the net amount at risk),
to stress that it is not yet available but funded (year by year) via the mutuality
mechanism;

– the amount Vt+1, which is not “at risk,” as the reserve has to be used anyhow
(sooner or later)

(see Fig. 5.29, lower panel).
• In the case of no death benefit (C = 0), or a death benefit smaller than the reserve

(C < Vt ), the amount at risk is negative; in these cases, if the insured dies in
the year, the sum at risk (the whole reserve, in the case C = 0) is released for
mutuality and thus contributes to financing the benefits pertaining to the policies
still in-force.

Remark 1 It is worth stressing that the term “risk” is used, in this context, according to its traditional
actuarial meaning, that is “risk of death.” Other risk causes (e.g., investment risks) are not involved.

Remark 2 Recursive Eqs. (5.4.5)–(5.4.8) can be easily interpreted also referring to a portfolio of
policies. Let Nt denotes the (given) number of policies in-force at time t , and Nt+1 the random
number of policies in-force at time t + 1, namely the number of insureds still alive. Further, let Dt
denote the random number of insureds dying in the year; thus, Dt = Nt − Nt+1. Refer, for example,
to Eq. (5.4.6). We can write:

(Nt Vt + Nt P)(1 + i ′) = Nt q ′
x+t C + Nt p′

x+t Vt+1 (5.4.10)

On the left-hand side of Eq. (5.4.10), we find the amount of resources (reserves and premiums)
pertaining to policies in-force at time t , cumulated to time t + 1. As regards the right-hand side
of the equation, we first note that Nt p′

x+t = E[Nt+1] is the expected number of insureds alive at
time t + 1, whereas Nt q ′

x+t = E[Dt ] is the expected number of insureds dying in the year. The
interpretation of the right-hand side of Eq. (5.4.10) in terms of insurer’s expected obligations is then
straightforward.
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5.4.3 Risk Premium and Savings Premium

From Eq. (5.4.7), we obtain:

P = [(C − Vt+1) (1 + i ′)−1 q ′
x+t ] + [Vt+1 (1 + i ′)−1 − Vt ] (5.4.11)

so that the two following components of the annual premium can be recognized:

P [R]
t = (C − Vt+1) (1 + i ′)−1 q ′

x+t (5.4.12a)

P [S]
t = Vt+1 (1 + i ′)−1 − Vt (5.4.12b)

The two components are called the risk premium and the savings premium, respec-
tively.

The savings premiums maintain the reserving process. In fact, from (5.4.12b) we
find:

Vt+1 = (Vt + P [S]
t ) (1 + i ′) (5.4.13)

and then:

Vt+1 = P [S]
0 (1 + i ′)t+1 + P [S]

1 (1 + i ′)t + · · · + P [S]
t (1 + i ′) (5.4.14)

It turns out that the policy reserve is the result of the financial accumulation of the
savings premiums. Conversely, the risk premium is the premium of a one-year term
insurance to cover the sum at risk.

We note that the two premium components are not necessarily both positive.
In particular, if the sum at risk is negative, the risk premium is negative. See the
following numerical examples for further details.

Example 5.4.1 Table 5.2 refers to a term insurance, with annual level premiums
(denoted by Pt , as in following examples other premium arrangements will be
addressed), payable for the whole policy duration. In particular, the decomposi-
tion of the annual premium into risk premium and savings premium is displayed.
Further, the natural premiums and the time profiles of the reserve and the sum at risk
are shown. Data are as follows: C = 1 000, x = 50, m = 10, TB1 = (0.02, LT1). It
is interesting to note that the risk premiums are very close to the natural premiums,
as the reserve is very small and hence the sum at risk almost coincides with the sum
assured.

Table 5.3 refers to a single-premium term insurance. Clearly, P0 = Π = C m A′
x .

Data are as above. Natural premiums coincide, of course, with those in Table 5.2; in
fact, natural premiums only depend on the benefit structure, while they are indepen-
dent of the specific premium arrangement. All the savings premiums, but the first
one, are negative and represent the “use” of the reserve in the mutuality process. ❑

Example 5.4.2 A pure endowment is referred to in Table 5.4. Data are as follows:
S = 1 000, x = 50, m = 10, TB1 = (0.02, LT1). As C = 0, the sum at risk is
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Table 5.2 Term insurance (annual level premiums)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 5.40 3.31 3.31 2.09 0.00 –

1 5.40 3.68 3.66 1.74 2.14 997.86

2 5.40 4.08 4.05 1.35 3.95 996.05

3 5.40 4.52 4.49 0.91 5.40 994.60

4 5.40 5.01 4.98 0.42 6.44 993.56

5 5.40 5.56 5.52 −0.12 7.00 993.00

6 5.40 6.17 6.13 −0.73 7.01 992.99

7 5.40 6.84 6.80 −1.40 6.41 993.59

8 5.40 7.58 7.56 −2.16 5.11 994.89

9 5.40 8.41 8.41 −3.01 3.01 996.99

10 – – – – 0 1 000.00

Table 5.3 Term insurance (single premium)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 48.52 3.31 3.16 45.35 0.00 –

1 0.00 3.68 3.52 −3.52 46.26 953.74

2 0.00 4.08 3.91 −3.91 43.60 956.40

3 0.00 4.52 4.35 −4.35 40.48 959.52

4 0.00 5.01 4.85 −4.85 36.85 963.15

5 0.00 5.56 5.41 −5.41 32.64 967.36

6 0.00 6.17 6.03 −6.03 27.78 972.22

7 0.00 6.84 6.73 −6.73 22.19 977.81

8 0.00 7.58 7.52 −7.52 15.76 984.24

9 0.00 8.41 8.41 −8.41 8.41 991.59

10 – – – – 0.00 1 000.00

negative, and then all the risk premiums are negative; hence we find P [S]
t > P for all

t . This means that the premium P is insufficient to maintain the reserving process,
which in fact needs for the contributions provided by the reserves of the policies
terminating because of the insureds’ death. Formally, this feature clearly appears by
rewriting Eq. (5.4.8) for the pure endowment; indeed, we find:

(Vt + P) (1 + i ′) + Vt+1 q ′
x+t = Vt+1 (5.4.15)

where the term Vt+1 q ′
x+t represents the contribution mentioned above. ❑

Example 5.4.3 Table 5.5 refers to a (standard) endowment insurance. Data are as
follows: C = S = 1 000, x = 50, m = 10, TB1 = (0.02, LT1). All the entries
in Table 5.5 can be obtained as the sum of the corresponding entries in Tables 5.2
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Table 5.4 Pure endowment (annual level premiums)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 86.30 0.00 −0.29 86.60 0.00 –

1 86.30 0.00 −0.66 86.96 88.33 −88.33

2 86.30 0.00 −1.11 87.41 178.80 −178.80

3 86.30 0.00 −1.66 87.96 271.53 −271.53

4 86.30 0.00 −2.33 88.63 366.68 −366.68

5 86.30 0.00 −3.14 89.45 464.42 −464.42

6 86.30 0.00 −4.12 90.43 564.95 −564.95

7 86.30 0.00 −5.30 91.61 668.48 −668.48

8 86.30 0.00 −6.72 93.02 775.29 −775.29

9 86.30 971.98 −8.41 94.71 885.68 −885.68

10 – – – – 1 000.00 −1 000.00

Table 5.5 Endowment insurance (annual level premiums)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 91.71 3.31 3.01 88.69 0.00 –

1 91.71 3.68 3.00 88.70 90.46 909.54

2 91.71 4.08 2.95 88.76 182.75 817.25

3 91.71 4.52 2.83 88.87 276.94 723.06

4 91.71 5.01 2.65 89.05 373.12 626.88

5 91.71 5.56 2.38 89.32 471.42 528.58

6 91.71 6.17 2.00 89.70 571.96 428.04

7 91.71 6.84 1.50 90.20 674.90 325.10

8 91.71 7.58 0.84 90.86 780.40 219.60

9 91.71 980.39 0.00 91.71 888.69 111.31

10 – – – – 1 000.00 0.00

and 5.4. We note that all the risk premiums and the savings premiums are positive.
This suggests to look at the endowment insurance as the combination of an m-
year financial transaction and a sequence of one-year term insurances, as shown
in Table 5.6. The interpretation is as follows. An individual, instead of purchasing
a m-year endowment insurance with sum insured C , and hence paying the annual
premiums P , could in each year:

• invest the amount P [S]
t in a fund, managed by a financial institution, and annually

credited with the interest rate i ′;
• pay the amount P [R]

t to an insurer to buy a one-year term insurance for a sum
assured such that the sum itself plus the balance of the fund is equal to C .
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Table 5.6 The endowment insurance as a combination of transactions

Year (t, t + 1) A m-year financial transaction A sequence of m one-year term insurances

Payment (at
time t)

Result (at time
t + 1)

Payment (at
time t)

Result (at time
t + 1)

(0, 1) P [S]
0 V1 P [R]

0 C − V1

(1, 2) P [S]
1 V2 P [R]

1 C − V2

(2, 3) P [S]
2 V3 P [R]

2 C − V3

… … … … …

(m − 2, m − 1) P [S]
m−2 Vm−1 P [R]

m−2 C − Vm−1

(m − 1, m) P [S]
m−1 = P Vm = C P [R]

m−1 = 0 C − Vm = 0

It is easy to check that, in both the case of survival and the case of death prior to
maturity, the amounts paid by the individual and the benefits obtained by the ben-
eficiaries coincide with the corresponding outflows and inflows of the endowment
insurance. It is worth stressing, however, that the “equivalence” between the endow-
ment insurance and the set of transactions described above relies on some important
assumptions that, at least to some extent, are rather unrealistic. In particular, the
financial transaction should guarantee a constant interest rate i ′, as a (traditional)
endowment insurance does. As regards the one-year term insurances, the life table
adopted for calculating the premiums could be changed throughout the m years,
thanks to mortality improvements in the population, and hence with an advantage to
the insured; on the contrary, if medical examinations are required, the death proba-
bilities could be raised because of worsened health conditions. In conclusion, while
the interpretation we have sketched is useful to understand the two-fold role of a life
insurance company, it should not be meant as aiming to prove analogies among the
results of different transactions. ❑

Example 5.4.4 Table 5.7 refers to a single-premium immediate life annuity (in
arrears). Data are as follows: b = 100, x = 65, TB1 = (0.02, LT4). The tech-
nical structure of a life annuity requires a generalization of the recursive equations.
First, we set C = 0 in Eq. (5.4.6), and then we generalize the equation as follows:

(Vt + Pt )(1 + i ′) = (Vt+1 + b) p′
x+t (5.4.16)

where V0 = 0, P0 = Π = a′
x , and Pt = 0, for t = 1, 2, . . . . Equation (5.4.16)

allows us to split the annual benefit b in order to single out the resources used to
finance the benefit itself. To simplify the notation, we assume V0 = Π ; hence, we
can simply write, for t = 0, 1, 2, . . . :

Vt (1 + i ′) = (Vt+1 + b) p′
x+t (5.4.17)
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Table 5.7 Life annuity in arrears (single premium)

t Pt P [N]
t P [R]

t P [S]
t Vt b = 100

Reserve
con-
sumption

Interest Mortality
credit

0 1 706.88 97.48 −9.81 1 716.69 0.00 − − −
1 0.00 97.41 −10.72 10.72 1 651.02 55.86 34.14 10.00

2 0.00 97.33 −11.70 11.70 1 594.97 56.04 33.02 10.94

3 0.00 97.23 −12.76 12.76 1 538.81 56.16 31.90 11.94

4 0.00 97.13 −13.89 13.89 1 482.60 56.21 30.78 13.02

5 0.00 97.01 −15.11 15.11 1 426.43 56.18 29.65 14.17

… … … … … … … … …

10 0.00 96.16 −22.43 22.43 1 149.01 54.72 24.07 21.21

11 0.00 95.92 −24.16 24.16 1 094.87 54.14 22.98 22.88

12 0.00 95.65 −25.97 25.97 1 041.41 53.46 21.90 24.64

13 0.00 95.35 −27.87 27.87 988.73 52.68 20.83 26.49

14 0.00 95.01 −29.85 29.85 936.93 51.80 19.77 28.43

15 0.00 94.63 −31.90 31.90 886.11 50.82 18.74 30.44

… … … … … … … … …

20 0.00 91.93 −43.17 43.17 650.12 44.48 13.89 41.62

21 0.00 91.20 −45.57 45.57 607.16 42.97 13.00 44.03

22 0.00 90.37 −47.99 47.99 565.78 41.38 12.14 46.48

23 0.00 89.46 −50.43 50.43 526.04 39.73 11.32 48.95

24 0.00 88.45 −52.88 52.88 488.01 38.04 10.52 51.44

25 0.00 87.34 −55.32 55.32 451.70 36.30 9.76 53.94

… … … … … … … … …

After a little algebra, we find:

b = [
Vt − Vt+1

] + [
Vt i ′

] +
[

Vt (1 + i ′)
q ′

x+t

p′
x+t

]
(5.4.18)

The interpretation of (5.4.18) is straightforward:

• the first term on the right-hand side is the amount of benefit financed by the reserve
consumption;

• the second term is the amount financed by the interest on the reserve at the begin-
ning of the year (which coincides with the single premium if t = 0);
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Fig. 5.30 Resources
financing the annual benefit

• the third term represents the contribution from the mutuality mechanism, i.e., the
mortality credit; indeed, it can be easily interpreted rewriting the fraction in terms
of the expected number of survivors as follows:

q ′
x+t

p′
x+t

= �′
x+t − �′

x+t+1

�′
x+t+1

where the �′’s denote the expected numbers of survivors according to the first-order
table.

The splitting of the annual benefit is shown by the last three columns of Table 5.7
and, in graphical terms, by Fig. 5.30. It clearly appears that the mutuality effect
becomes more and more important as t increases, because of an increasing mortality
among annuitants. To single out the risk and savings components, we generalize
Eq. (5.4.7), again setting C = 0:

Vt + Pt = −Vt+1 (1 + i ′)−1 q ′
x+t + Vt+1 (1 + i ′)−1 + b (1 + i ′)−1 p′

x+t (5.4.19)

where (as in (5.4.16)) V0 = 0, P0 = Π = a′
x , and Pt = 0, for t = 1, 2, . . . . From

(5.4.19), after a little algebra we obtain:

Pt = [
(Vt+1 + b) (1 + i ′)−1 − Vt

] + [
(−Vt+1 − b) (1 + i ′)−1 q ′

x+t

]
(5.4.20)

and then

P [R]
t = (−Vt+1 − b) (1 + i ′)−1 q ′

x+t (5.4.21a)

P [S]
t = (Vt+1 + b) (1 + i ′)−1 − Vt (5.4.21b)
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Hence, P [R]
t < 0 for all t , and, for t = 1, 2, . . . , as Pt = 0 then P [S]

t = −P [R]
t >

0. Thus, reserves released by the annuitants dying in the various years maintain
the reserves of the surviving annuitants, according to the mutuality mechanism. As
regards the natural premiums, we have, for all t :

P [N]
t = b (1 + i ′)−1 p′

x+t (5.4.22)

Table 5.7 shows the numerical results. ❑

5.4.4 Life Insurance Products versus Financial Accumulation

Consider the whole life insurance, financed via single-recurrent premiums, and
assume i ′ = 0 (see Sect. 4.4.5). As already noted, according to this arrangement
no mortality risk is borne by the insurer. The formal proof is straightforward. In
the case of death in year t , the sum paid to the beneficiary is Ct = ∑t−1

h=0 Πh

(see Eq. (4.4.39)); the reserve at time t is Vt = ∑t−1
h=0 Πh (see Eq. (5.3.13)). Thus,

Ct = Vt , and hence the sum at risk is equal to zero.
In general, any product in which the death benefit coincides with the policy reserve

is just a financial accumulation product. In fact, from

Ct = Vt (5.4.23)

it follows:
P [R]

t = 0 (5.4.24)

and hence
P [S]

t = P (5.4.25)

so that the reserve coincides with the accumulation of the premiums P (or Pt , or Πt ).
A financial accumulation product can be transformed into a “real” insurance

product via redefinition of the death benefit Ct , which can be expressed as a function
of the reserve Vt , such that the following inequality holds:

Ct > Vt (5.4.26)

(instead of (5.4.23)). This transformation can be mandatory because of regulation,
or can be useful for tax purposes, etc. Some examples follow; in the related figures,
the dashed line represents the policy reserve.

1. Choose the amount K , and set:

Ct = Vt + K (5.4.27)

Thus, the sum at risk is K ; see Fig. 5.31.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Fig. 5.31 Constant sum at
risk

Ct

K

time 

Fig. 5.32 Proportional sum
at risk

time 

Ct

α Vt

Fig. 5.33 Sum at risk with
an upper bound

time 

C 

Ct

K

2. Choose the rate α, and set:
Ct = (1 + α) Vt (5.4.28)

Thus, the sum at risk is α Vt ; see Fig. 5.32.
3. Choose the amounts K and C , and set:

Ct = min{Vt + K , C} (5.4.29)

Thus, the sum at risk is min{K , C − Vt }; see Fig. 5.33.
4. Choose the amounts K and C , and set:

Ct = max{Vt + K , C} (5.4.30)

Thus, the sum at risk is max{K , C − Vt }; see Fig. 5.34.
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Fig. 5.34 Sum at risk with a
lower bound

time 

Ct

K

C 

Remark We note that in case 3 above, it may turn out Ct < Vt , namely if Vt increases above C .
Given the purposes of the policy design, it is not acceptable that Ct < Vt . Thus, the death benefit

Ct = max{min{Vt + K , C}, Vt } (5.4.31)

should rather be considered instead of (5.4.29).

5.5 Expected Profits

The approach to the profit assessment we have described in Sect. 4.3.8 simply relies
on a comparison between actuarial values of benefits, namely between the actuarial
value calculated by adopting the scenario basis, i.e., TB2, and the actuarial value
assumed as the single premium, hence calculated by adopting the prudential basis,
i.e., TB1.

A deeper analysis of expected profits requires further steps. In particular:

1. premium arrangements other than that based on a single premium must be allowed
for;

2. as life insurance contracts usually have a multi-year duration, it can be useful to
attribute a share of the (total) expected profit to each policy year; hence, annual
profits are defined, showing the profit emerging throughout the policy duration;

3. further elements, which can constitute sources of profit/loss should be taken into
account, and typically

• expenses and expense loadings;
• lapses, surrenders, and policy alterations.

Issues 1 and 2 are dealt with in the present section; indeed, the mathematical
reserve provides a tool for a “natural” definition of expected annual profits. Con-
versely, topic 3 will be discussed in Chap. 6, in the framework of a life portfolio
analysis.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_6
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5.5.1 Expected Annual Profits

We refer to Eq. (5.4.6) which can also be written as follows:

(Vt + P) (1 + i ′) − Cq′
x+t − Vt+1 p′

x+t = 0 (5.5.1)

Equation (5.5.1) relates to policy year (t, t + 1), and expresses a balance between
resources (the reserve at the beginning of the year and the premium) and expected
obligations (the sum in the case of death and the reserve at the end of the year). The
balance relies on the adoption of the same technical basis, namely the first-order
basis TB1, in all the elements of Eq. (5.5.1), and this, in its turn, follows from the
assumptions adopted in defining the policy reserve (see Sect. 5.3.1).

Conversely, assume that:

• a realistic estimate of the yield from the investment of the amount Vt + P is
expressed by the interest rate i ′′;

• the mortality in the portfolio can be described in realistic terms by probabilities
q ′′

x+t .

Thus, the scenario basis TB2 can be introduced into Eq. (5.5.1). The shift to TB2
clearly results in a different meaning of some quantities. Actually, we obtain:

(Vt + P) (1 + i ′′) − Cq′′
x+t − Vt+1 p′′

x+t = PLt+1 (5.5.2)

where PLt+1 ( >
<

0) denotes the expected annual profit/loss arising from the “dis-
tance” between TB1 and TB2. We note that PLt+1 is referred to time t + 1, for a
policy assumed to be in-force at time t .

Remark Equation (5.5.2) can be easily interpreted also referring to a portfolio of policies. A similar
interpretation has been provided for Eq. (5.4.6) (see Remark 2 in Sect. 5.4.2). Let Nt denotes the
(given) number of policies in-force at time t , and Nt+1 the random number of policies in-force at
time t + 1, namely the number of insureds still alive. Then, we can write:

Nt Vt + Nt P + (Nt Vt + Nt P) i ′′ − Nt q ′′
x+t C − Nt p′′

x+t Vt+1 = Nt PLt+1 (5.5.3)

All quantities can be interpreted as in Eq. (5.4.10). In particular: Nt p′′
x+t = E[Nt+1], Nt q ′′

x+t =
E[Dt ]. Note, however, that the expected numbers are now calculated according to TB2. In Eq. (5.5.3),
we can recognize some of the (main) items of the Profit & Loss Statement (briefly P & L). In general,
the P & L Statement refers to a specific period (say, a year) and indicates how the profit/loss
originates from income net of expenditure. As we are only addressing one generation of policies,
and we are disregarding expenses and related loadings as well as lapses and surrenders, the resulting
representation is extremely simplified (see Table 5.8). Further, an obvious adjustment in the benefits
is needed when referring to the last year of the policy duration.
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Table 5.8 Actuarial values
as items of a P & L statement

P & L statement

Income

Premiums Nt P

Income from investments (Nt Vt + Nt P) i ′′

Expenditure

Benefits paid E[Dt ] C

Change in liabilities E[Nt+1] Vt+1 − Nt Vt

Profit Nt PLt+1

5.5.2 Splitting the Annual Profit

We now refer to Eq. (5.4.8), written as follows:

(Vt + P) (1 + i ′) − (C − Vt+1) q ′
x+t − Vt+1 = 0 (5.5.4)

Adopting the scenario basis TB2, as in Eq. (5.5.2), we have:

(Vt + P) (1 + i ′′) − (C − Vt+1)q
′′
x+t − Vt+1 = PLt+1 (5.5.5)

Then, by subtracting (5.5.4) from (5.5.5), we obtain the so-called contribution
formula (proposed by S. Homans, 1863):

(Vt + P) (i ′′ − i ′) + (C − Vt+1) (q ′
x+t − q ′′

x+t ) = PLt+1 (5.5.6)

which suggests the splitting of the expected annual profit into two terms:

PL
[fin]
t+1 = (Vt + P) (i ′′ − i ′) (5.5.7a)

PL
[m/l]
t+1 = (C − Vt+1) (q ′

x+t − q ′′
x+t ) (5.5.7b)

The quantity PL
[fin]
t+1 is the financial margin, namely the component of the expected

annual profit originated by the spread between the interest rates, i ′′ − i ′. Clearly, as
Vt + P > 0, the financial margin is positive if and only if i ′′ > i ′.

The component PL
[m/l]
t+1 is the mortality/longevity margin, which arises from the

difference between the mortality rates at the various ages. We note that:

• if C − Vt+1 > 0, the mortality/longevity margin is positive if and only if q ′
x+t >

q ′′
x+t ;

• if C − Vt+1 < 0, the mortality/longevity margin is positive if and only if q ′
x+t <

q ′′
x+t .
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Table 5.9 Term insurance: expected profits

t Vt PLt PL
[fin]
t PL

[m/l]
t

0 0.00 − − −
1 0.76 0.14 0.02 0.12

2 1.40 0.16 0.03 0.13

3 1.92 0.18 0.03 0.15

4 2.29 0.20 0.04 0.16

5 2.48 0.22 0.04 0.18

6 2.49 0.24 0.04 0.20

7 2.27 0.27 0.04 0.22

8 1.81 0.29 0.04 0.25

9 1.06 0.31 0.04 0.27

10 0.00 0.33 0.03 0.30

Thus, the sign of the sum at risk is the driving factor in the choice of the life table to be
adopted in the first-order basis, TB1, in order to obtain implicit safety loadings, and
hence positive expected profits. For pricing insurance products with a positive sum at
risk (for example: the term insurance, the whole life insurance, and the endowment
insurance), a life table with a mortality higher than that actually expected in the
portfolio should be chosen. On the contrary, products with a negative sum at risk (the
pure endowment and the life annuities) require a mortality assumption lower than
the mortality actually expected.

Example 5.5.1 Table 5.9 refers to a term insurance. Policy data are as follows: C =
1 000, x = 40, m = 10; annual level premiums, P , are payable throughout the
whole policy duration. The pricing basis is TB1 = (0.02, LT1); we then find: P =
1.93. Expected profits are calculated by adopting the second-order basis TB2 =
(0.03, LT2). We note that the poor financial content of the term insurance implies
very low financial profits, whereas more important contributions to the expected
profits come from the mortality assumptions.

Table 5.10 refers to an endowment insurance. Policy data are as follows: C =
1 000, x = 50, m = 15. Annual level premiums, P , are payable throughout the
whole policy duration. The pricing basis is TB1 = (0.02, LT1); we then find: P =
59.54. Expected profits are calculated by adopting the second-order basis TB2 =
(0.03, LT2). Unlike the term insurance, the endowment insurance has important
financial contents, so that the spread between interest rates originates significant
contributions to the expected profits. On the contrary, mortality profits are low, and
definitely decreasing as the sum at risk decreases. As we will see in Sect. 7.3, the
financial profit is shared with policyholders, through an adjustment of benefits. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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Table 5.10 Endowment insurance: expected profits

t Vt PLt PL
[fin]
t PL

[m/l]
t

0 0.00 − − −
1 57.54 0.91 0.60 0.32

2 116.11 1.50 1.17 0.33

3 175.74 2.10 1.76 0.34

4 236.46 2.70 2.35 0.35

5 298.33 3.32 2.96 0.36

6 361.40 3.94 3.58 0.36

7 425.75 4.57 4.21 0.36

8 491.45 5.20 4.85 0.35

9 558.59 5.85 5.51 0.34

10 627.30 6.50 6.18 0.32

11 697.70 7.15 6.87 0.28

12 769.96 7.81 7.57 0.24

13 844.26 8.47 8.29 0.18

14 920.85 9.14 9.04 0.10

15 1 000.00 9.80 9.80 0.00

5.5.3 The Expected Total Profit

The sequence of expected profits/losses PL1, PL2, . . . , PLm , which are originated
yearly by the policy, can be interpreted as a temporary life annuity. The expected
present value of this annuity, PL, according to the scenario basis TB2, is given by:

PL =
m−1∑
t=0

PLt+1 (1 + i ′′)−(t+1)
t p′′

x (5.5.8)

which can be interpreted as the expected value of the total profit/loss, expressed as
a present value at time 0.

It is possible to check that, assuming V0 = 0 and Vm = S, and plugging Eq. (5.5.2)
into (5.5.8), we find the following expression:

PL =
m−1∑
t=0

P (1+i ′′)−t
t p′′

x −
m−1∑
t=0

C (1+i ′′)−(t+1)
t |1q ′′

x −S (1+i ′′)−m
m p′′

x (5.5.9)

in which the policy reserve does not appear. We note that the result expressed by
(5.5.9) holds thanks to the use of the TB2 for discounting the expected annual profits.
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Equation (5.5.9) can also be written as follows:

PL =
m−2∑
t=0

t p′′
x (1 + i ′′)−(t+1)

[
P (1 + i ′′) − Cq′′

x+t

]
+ m−1 p′′

x (1 + i ′′)−m [
P (1 + i ′′) − Cq′′

x+m−1 − S p′′
x+m−1

]
(5.5.10)

The quantities in brackets, namely

CFt+1 = P (1 + i ′′) − Cq′′
x+t ; t = 0, 1, . . . , m − 2 (5.5.11a)

CFm = P (1 + i ′′) − Cq′′
x+m−1 − S p′′

x+m−1 (5.5.11b)

represent the expected annual cash flows, referred to a policy in-force at time t or
m − 1, respectively, each cash flow being cumulated at the end of the relevant year.

Thus, the expected total profit is the expected present value of the life annuity
which consists of the expected annual cash flows. In formal terms:

PL =
m−1∑
t=0

CFt+1 (1 + i ′′)−(t+1)
t p′′

x (5.5.12)

Hence, the reserve profile affects the expected annual profits and then the emer-
gence of profit throughout time, i.e., the timing of the profit, while it does not affect
the total amount of the expected profit.

Example 5.5.2 We refer to the insurance products addressed in Example 5.5.1. We
find

• for the term insurance: PL = 1.93;
• for the endowment insurance: PL = 55.90.

❑

The following example can help in understanding the effect of the reserve on the
emerging of expected profits.

Example 5.5.3 Refer to an endowment insurance with annual premiums payable
for the whole policy duration. Data are as follows: C = 1 000, x = 50, m = 15;
TB1 = (0.02, LT1), TB2 = (0.03, LT2). Figure 5.35 displays the policy reserves
calculated with the interest rates 0, 0.02 (namely i ′), and 0.04; possible negative
values have been replaced by 0.

Table 5.11 shows the annual profits, PL
(0.00)

t , PL
(0.02)

t , and PL
(0.04)

t , corresponding
to the three reserve profiles. It clearly emerges that high reserve values (compared
to those obtained using the interest rate i ′ = 0.02) imply a heavy expected loss
in the first year, which is recovered by positive expected profits in the following
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Fig. 5.35 Endowment
insurance (annual level
premiums)
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Table 5.11 Endowment insurance (annual level premiums)

t V (0.00)
t PL

(0.00)

t V (0.02)
t PL

(0.02)

t V (0.04)
t PL

(0.04)

t

0 0.00 – 0.00 – 0.00 –

1 198.08 −139.20 57.54 0.91 0.00 58.28

2 254.82 8.01 116.11 1.50 16.10 41.90

3 311.50 9.72 175.74 2.10 74.82 −0.37

4 368.13 11.42 236.46 2.70 135.75 −0.95

5 424.72 13.12 298.33 3.32 199.00 −1.55

6 481.32 14.82 361.40 3.94 264.71 −2.17

7 537.95 16.51 425.75 4.57 333.02 −2.83

8 594.66 18.21 491.45 5.20 404.11 −3.51

9 651.51 19.89 558.59 5.85 478.16 −4.24

10 708.55 21.58 627.30 6.50 555.39 −5.00

11 765.86 23.26 697.70 7.15 636.07 −5.81

12 823.54 24.95 769.96 7.81 720.48 −6.66

13 881.69 26.63 844.26 8.47 808.99 −7.58

14 940.46 28.31 920.85 9.14 902.00 −8.56

15 1 000.00 30.00 1 000.00 9.80 1 000.00 −9.62

PL
(0.00) = 55.90 PL

(0.02) = 55.90 PL
(0.04) = 55.90

years. Conversely, low reserve values lead to an accelerated emerging of expected
profits, compensated by expected losses in the following years. Of course, we find

PL
(0.00) = PL

(0.02) = PL
(0.04) = 55.90 (see Example 5.5.2). ❑

Some results, which emerge from Example 5.5.3, can be generalized. In particular,
it can be proved that:
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• a lower interest rate adopted in the reserve calculation implies higher reserve
values, and hence a “delay” in profit emerging;

• a higher interest rate adopted in the reserve calculation implies lower reserve
values, and hence an “acceleration” in profit emerging.

5.5.4 Cash Flows, Profits, and Premium Margins

By comparing Eq. (5.5.11) to Eq. (5.5.2), we find (as Vm = S) the following relations:

PLt+1 = CFt+1 + Vt (1 + i ′′) − Vt+1 p′′
x+t ; t = 0, 1, . . . , m − 2 (5.5.13a)

PLm = CFm + Vm−1 (1 + i ′′) (5.5.13b)

In respect of the annual profit/loss, the role of the policy reserve, and its change in
particular, then consists in attributing shares of premiums to policy years, so shifting
from “cash-based” valuations (the CF’s) to “pertinence-based” valuations (the PL’s).

Example 5.5.4 Profit profile and cash flow profile are compared in Tables 5.12 and
5.13, which refer to a term insurance and an endowment insurance, respectively.
Policy data and technical bases TB1 and TB2 are as in Example 5.5.1. ❑

Of course, different time profiles of the reserve lead to different premium attri-
butions and hence, as shown in Example 5.5.3, to different profit profiles. A very
particular reserve profile and the related profit profile will be presented in Sect. 5.5.5.

Moreover, specific profit profiles can be generated by adopting a different
approach to profit assessment. An interesting approach is described in what follows.

Table 5.12 Term insurance
(annual level premiums) t PLt CFt (P − P ′′) (1 + i ′′)

1 0.14 0.90 0.23

2 0.16 0.78 0.23

3 0.18 0.65 0.23

4 0.20 0.51 0.23

5 0.22 0.35 0.23

6 0.24 0.17 0.23

7 0.27 −0.03 0.23

8 0.29 −0.25 0.23

9 0.31 −0.49 0.23

10 0.33 −0.76 0.23



5.5 Expected Profits 315

Table 5.13 Endowment
insurance (annual level
premiums)

t PLt CFt (P − P ′′) (1 + i ′′)
1 0.91 58.28 4.84

2 1.50 57.95 4.84

3 2.10 57.58 4.84

4 2.70 57.17 4.84

5 3.32 56.72 4.84

6 3.94 56.22 4.84

7 4.57 55.66 4.84

8 5.20 55.04 4.84

9 5.85 54.36 4.84

10 6.50 53.60 4.84

11 7.15 52.76 4.84

12 7.81 51.82 4.84

13 8.47 50.79 4.84

14 9.14 49.65 4.84

15 9.80 −938.67 4.84

Refer to Eq. (5.5.9), and set:

ä′′
x :m� =

m−1∑
t=0

(1 + i ′′)−t
t p′′

x (5.5.14)

m A′′
x =

m−1∑
t=0

(1 + i ′′)−(t+1)
t |1q ′′

x (5.5.15)

m E ′′
x = (1 + i ′′)−m

m p′′
x (5.5.16)

The expected total profit can be expressed as follows:

PL = P ä′′
x :m� − C m A′′

x − S m E ′′
x (5.5.17)

Let P ′′ denote the “second-order premium,” namely the annual level premium
calculated by adopting the scenario basis TB2, such that:

P ′′ ä′′
x :m� = C m A′′

x + S m E ′′
x (5.5.18)

The expected total profit/loss can then be expressed as the actuarial value of the
temporary life annuity whose items are the annual premium margins:

PL = (P − P ′′) ä′′
x :m� (5.5.19)
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The following aspects should be stressed.

• The result expressed by Eq. (5.5.19) is extremely intuitive: indeed, the expected
total profit/loss is due to the difference between the premium charged to the poli-
cyholder (P) and the premium fulfilling the equivalence principle under realistic
assumptions (P ′′), which clearly leads to a zero expected profit.

• Equation (5.5.19) generalizes to the case of annual premiums the result expressed
by Eq. (4.3.27) for the single-premium arrangement.

• According to Eq. (5.5.19), we could assume as the expected annual profit the
amount

PLt = (P − P ′′) (1 + i ′′); t = 1, 2, . . . , m (5.5.20)

so originating a flat profit profile. Note, however, that this can lead to a significant
acceleration in the emerging of profits (see Example 5.5.5).

Example 5.5.5 From Tables 5.12 and 5.13, which refer to a term insurance and an
endowment insurance, respectively, it clearly appears that, in both the insurance
products, the assumption (5.5.20) leads to a significant acceleration in the profit
profile. ❑

5.5.5 Expected Profits According to Best-Estimate Reserving

Consider the expected present value of future benefits net of future premiums, accord-
ing to the scenario basis TB2, that is, in formal terms:

V [BE]
t = C m−t A′′

x+t + S m−t E ′′
x+t − P ä′′

x+t :m−t� (5.5.21)

The quantity V [BE]
t is usually called the best-estimate reserve.

In particular, we have:

V [BE]
0 = C m A′′

x + S m E ′′
x − P ä′′

x :m� (5.5.22)

and hence (see Eqs. (5.5.18) and (5.5.19)):

V [BE]
0 = (P ′′ − P) ä′′

x :m� = −PL (5.5.23)

Thus, the quantity −V [BE]
0 = PL represents the “value” of the policy (at the time

of its issue), meant as the expected present value of profits/losses originated by the
policy itself throughout its duration.

Assume now, for the policy reserve Vt , the following values:

V0 = 0; Vt = V [BE]
t , for t = 1, 2, . . . , m − 1; Vm = S (5.5.24)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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By using Eq. (5.5.2), with the reserves as defined by (5.5.24), after a little algebra
we obtain the following results:

PL1 = −V [BE]
0 (1 + i ′′) (5.5.25a)

PLt = 0; t = 2, . . . , m (5.5.25b)

Thus, the expected total profit/loss completely emerges in the first policy year.

Remark The particular profit profile originated by the best-estimate reserve witnesses the existence
of two basic approaches to profit emerging. The Deferral & Matching approach is a traditional
feature of actuarial models. The basic idea underlying this approach is that the total profit arises
progressively throughout time. The profit assessment procedure basically consists of two steps:
• assessment of annual results (typically: cash flows and profits);
• calculation of the total profit as the expected present value of annual results.

The Assets & Liabilities approach is a feature of financial models. The profit assessment procedure
basically consists of two steps:
• the total profit is given by the difference between the value of assets (e.g., the single premium,

or the credit for future periodic premiums) and the value of liabilities (the insurer’s obligations);
• possible annual profits are only given by changes in the values of assets and liabilities.

5.6 Reserving for Expenses

Equation (5.3.3) defines the “net reserve,” in which benefits and net premiums are
only involved. We can extend the definition, and thus define the “total reserve,” in
which expenses and loading for expenses are also included:

V [tot]
t = Ben′(t, m) + Exp′(t, m) − Prem′(t, m) − Load′(t, m) (5.6.1)

where Exp′(t, m) and Load′(t, m) represent the actuarial values at time t of future
expenses and expense loadings, respectively, calculated according to the first-order
basis. It turns out that V [tot]

t can be determined including the future expenses in the
insurer’s liabilities and directly accounting for the expense-loaded premiums instead
of the net premiums.

Of course, we also have
V [tot]

t = Vt + V [E]
t (5.6.2)

where V [E]
t = Exp′(t, m) − Load′(t, m) just allows for expenses and expense load-

ings.
Notwithstanding, it is much more useful to deal separately with the various

expense components and the related loadings. First, we note that the need for reserv-
ing arises because of a time-mismatching between the insurer’s inflow and outflow
streams. So, as regards expenses and related loadings, we can exclude premium col-
lection expenses, as these are supposed to occur at the same time the relevant loading
is cashed.
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Acquisition costs can also be excluded from further analysis in the case of a single
premium. Conversely, in the case of periodic premiums payable for s years, we can
define the (negative) acquisition cost reserve, which in fact represents the insurer’s
credit for the related loadings to be cashed in future years:

V [A]
t =

{
−Λ[A] ä′

x+t :s−t� for t ≤ s − 1

0 for t ≥ s
(5.6.3)

The quantity
V [Z]

t = Vt + V [A]
t (5.6.4)

is called the Zillmer reserve. In general, we have V [Z]
t ≤ Vt , and in particular, in the

first policy years, we may find V [Z]
t < 0. We note that the Zillmer reserve implies

a “clearing” between insurer’s credit and debt, and, (also) for this reason, in many
countries zillmerization is not allowed when assessing the balance sheet portfolio
reserve.

General administration expenses do not originate any reserve if the premiums are
payable for the whole policy duration, that is if s = m. On the contrary, if s < m the
reserve for general administration expenses is defined as follows:

V [G]
t =

{
γ C ä′

x+t :m−t� − Λ[G] ä′
x+t :s−t� for t ≤ s − 1

γ C ä′
x+t :m−t� for t ≥ s

(5.6.5)

In the case of a single premium, we have:

V [G]
t = γ C ä′

x+t :m−t� (5.6.6)

In some countries (in particular in Continental Europe), it is usual to define the
following reserve:

V [I]
t = Vt + V [G]

t (5.6.7)

which is called in Germany the Inventardeckungscapital.
It is easy to prove that the reserve, V [tot]

t , allowing for all the expenses and the
related loadings, as well as for benefits and net premiums, can be expressed as
follows:

V [tot]
t = Vt + V [A]

t + V [G]
t (5.6.8)

Example 5.6.1 We refer to the insurance products and the related data considered
in Example 4.5.1. Tables 5.14 and 5.15 display the various reserves allowing for
expenses and related loadings. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 5.14 Whole life insurance (level premiums; s = 15)

t Vt V [A]
t V [G]

t V [Z]
t V [I]

t V [tot]
t

0 0.00 0.00 0.00 0.00 0.00 0.00

1 42.57 −18.85 0.76 23.72 43.33 24.48

2 85.79 −17.68 1.55 68.11 87.34 69.66

3 129.69 −16.49 2.35 113.20 132.04 115.55

4 174.28 −15.27 3.17 159.01 177.45 162.18

5 219.57 −14.03 4.02 205.54 223.59 209.56

… … … … … … …

12 559.31 −4.60 10.74 554.71 570.05 565.45

13 611.76 −3.11 11.86 608.64 623.62 620.50

14 665.46 −1.58 13.02 663.88 678.49 676.90

15 720.56 0.00 14.25 720.56 734.81 734.81

16 730.68 0.00 13.74 730.68 744.42 744.42

… … … … … … …

24 807.47 0.00 9.82 807.47 817.29 817.29

25 816.33 0.00 9.37 816.33 825.70 825.70

… … … … … … …

Table 5.15 Endowment insurance (level premiums; s = m = 15)

t Vt V [A]
t V [G]

t V [Z]
t V [I]

t V [tot]
t

0 0.00 0.00 0 0.00 0.00 0.00

1 57.54 −34.52 0 23.02 57.54 23.02

2 116.11 −32.38 0 83.73 116.11 83.73

3 175.74 −30.19 0 145.54 175.74 145.54

4 236.46 −27.97 0 208.49 236.46 208.49

5 298.33 −25.70 0 272.63 298.33 272.63

… … … … … … …

12 769.96 −8.43 0 761.53 769.96 761.53

13 844.26 −5.70 0 838.56 844.26 838.56

14 920.85 −2.90 0 917.95 920.85 917.95

15 1 000.00 0.00 0 1 000.00 1 000.00 1 000.00

5.7 Surrender Values and Paid-Up Values

As mentioned in Sect. 4.1.2, the calculation of surrender values and paid-up values
should account for the policyholder’s credit at the time of the contract alteration.
The net policyholder’s credit (that is, the amount which allows for benefits, expenses
and expense-loaded premiums) is given by the reserve V [tot]

t , defined by (5.6.8). As

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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this reserve coincides in many cases with the Zillmer reserve V [Z]
t (see, for instance,

Table 5.15 in Example 5.6.1) we just focus on the Zillmer reserve.
The surrender value, denoted as Rt , can be determined as follows:

Rt = ϕ(t) V [Z]
t (5.7.1)

Note that the function ϕ(t) (0 ≤ ϕ(t) ≤ 1, and usually equal to 0 for t = 1, 2 only),
aims at penalizing the surrendering policyholders. Commonly, the penalty decreases
as t increases, and to this purpose the function should be increasing. The penalty can
be justified as follows:

• from a legal point of view, the policyholder breaks the contract;
• from an economic point of view, the insurer can recover, via the penalty, future

profits expected from the contract.

Other formulae are also commonly adopted in insurance practice. For endowment
insurance products, with maturity at time m and annual level premiums payable for
m years, the so-called proportional rule is frequently adopted. If C denotes the sum
insured, we have:

Rt = t

m
C (1 + i∗)−(m−t) (5.7.2)

Thus, a share of the sum insured, proportional to the number of annual premiums
already paid, is discounted at a rate i∗, higher than the interest rate in the technical
basis. Formula (5.7.2) can be justified looking at the time profile of the policy reserve
in an endowment insurance, which is very close to a linear profile (see, for example,
Fig. 5.15). The discounting rate i∗ can be used as a parameter to allow for both
zillmerisation and penalty.

To illustrate the reduction of the sum insured when converting an insurance con-
tract into a paid-up one, we refer to a m-year pure endowment, with sum insured S
and annual level premiums payable for the whole policy duration.

Assume that the policyholder asks for the reduction at time t , namely after paying
the annual premiums at times 0, 1, . . . , t −1. A share of the Zillmer reserve, V [Z]

t , is
then used (as a “single” premium) to finance the paid-up contract, namely the reduced
benefit at maturity, S[red], and the general administration expenses (quantified as
results from (4.5.6a)) for the residual duration.

In formal terms, S[red] is the solution of the following equation:

ϕ̄(t) V [Z]
t = S[red] (

m−t E ′
x+t + γ ä′

x+t :m−t�
)

(5.7.3)

The function ϕ̄(t) (0 < ϕ̄(t) ≤ 1) determines a penalty charged to the policyholder
when shifting to the paid-up contract, and can be justified similarly to the surrender
penalty (see above). However, as the contract goes on, we usually have ϕ̄(t) ≥ ϕ(t).

Formula (5.7.3) relies on the equivalence principle, and hence leads to a result
consistent with this actuarial calculation principle. Nonetheless, other (approximate)
formulae are often adopted in insurance practice. For example, according to the

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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proportional rule, in an endowment insurance with maturity at time m and annual
level premiums payable for m years, the amount S[red] can be determined as follows:

S[red] = t

m
S (5.7.4)

5.8 References and Suggestions for Further Reading

All the actuarial textbooks on life insurance mathematics and technique deal with
the calculation of reserves. Hence, the reader can refer to Bowers et al. (1997),
Dickson et al. (2013), Gerber (1995), Gupta and Varga (2002), Koller (2012), Norberg
(2002), Promislow (2006), and Rotar (2007).

The traditional approach to the profit assessment at the policy level is proposed
by Promislow (2006), whereas Gupta and Varga (2002) place special emphasis on
mortality profits.



Chapter 6
Reserves and Profits in a Life Insurance
Portfolio

6.1 The Portfolio Reserve

When shifting from individual reserves to the portfolio reserve, various specific
problems arise, although many basic ideas about the individual reserving process
keep their validity.

In particular, as in the individual case, the portfolio reserve can be looked at under
two different perspectives:

• an amount which quantifies the expected insurer’s liability for future benefits, net
of future premiums;

• assets, provided by the accumulation of (part of) the premiums, facing the liability
mentioned above.

The current reserve of an in-force portfolio can be calculated as the sum of the
individual policy reserves. In particular, when referring to a portfolio which consists
of a generation of identical policies (as assumed for simplicity in the following), the
portfolio reserve is determined by the individual reserve and the size of the portfolio
itself. When focussing on the evolution of a portfolio, its estimated size must be
taken into account.

Further, the portfolio riskiness (due to random fluctuations in mortality, in inter-
est rates, and so on) can be of interest, and hence the portfolio reserve could be
assessed by explicitly allowing for risks (rather than simply relying on a generic
safety loading).

In this section, we address the following topics:

• the evaluation of future portfolio reserves, starting from the individual (net pre-
mium) reserve, as defined in Sect. 5.3, thus using the same technical basis, that is,
the first-order basis (Sect. 6.1.1);

• the definition of the portfolio reserve by adopting a different approach to the
assessment of the insurer’s obligations, namely allowing for the riskiness inherent
in the liability, although, for simplicity, we will only focus on the mortality risk
(Sects. 6.1.2–6.1.5).

© Springer International Publishing Switzerland 2015
A. Olivieri and E. Pitacco, Introduction to Insurance Mathematics,
EAA Series, DOI 10.1007/978-3-319-21377-4_6

323

http://dx.doi.org/10.1007/978-3-319-21377-4_5


324 6 Reserves and Profits in a Life Insurance Portfolio

6.1.1 Future Portfolio Reserves

We refer to the insurance product we have addressed while describing the risk and
savings components of the life insurance business (for the relevant notation, and the
expression of the annual level premium, see Sect. 5.4.1). We disregard expenses and
related loadings.

We focus on a portfolio initially consisting of N0 “identical” policies (with N0
a given number). At (future) time t, the individual reserve is equal to Vt for each
policy still in-force. Assume that the portfolio is closed with respect to new policies
(namely, it is a “generation” of policies) and let Nt denote the random number of
policies in-force at time t. Hence, the portfolio reserve at time t is represented by the
random amount V [P]

t defined as follows:

V [P]
t = NtVt; t = 1, 2, . . . (6.1.1)

Future portfolio reserves can be assessed by assuming a sequence, n1, n2, . . . , of
outcomes of the random numbers N1, N2, . . . . For any given sequence, the estimated
portfolio reserve is given by:

V̂ [P]
t = ntVt; t = 1, 2, . . . (6.1.2)

In particular, assume that the only cause of exit is the insured’s death. Then, we
can set, for example:

nt = E[Nt] = N0 tp
′′
x ; t = 1, 2, . . . (6.1.3)

where tp′′
x denotes the probability of an insured age x being alive at age x+t, according

to a second-order basis, namely a realistic basis. In this case, we obtain:

V̂ [P]
t = E[V [P]

t ] = E[Nt] Vt; t = 1, 2, . . . (6.1.4)

Thus, V̂ [P]
t is the expected portfolio reserve (according to information available at

time 0).

Example 6.1.1 Refer to an endowment insurance. Data are as follows: S =
C = 1 000, x = 50, m = 15, TB1 = (0.02,LT1). The initial portfolio size is
N0 = 1 000. Table6.1 shows the expected numbers of policies in-force and the
expected portfolio reserve, according to probabilities tp′′

x derived from life tables
LT2 and LT3, respectively. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Table 6.1 The expected portfolio reserve

t Vt LT2 LT3

E[Nt] E[V [P]
t ] E[Nt] E[V [P]

t ]
0 0.00 1 000.00 0.00 1 000.00 0.00

1 57.54 996.96 57368.75 997.29 57388.07

2 116.11 993.59 115 366.58 994.30 115 448.58

3 175.74 989.87 173 955.34 990.98 174 151.18

4 236.46 985.76 233 091.59 987.32 233 461.39

5 298.33 981.22 292 726.25 983.27 293 340.38

6 361.40 976.20 352 804.19 978.81 353 744.67

7 425.75 970.67 413 263.88 973.87 414 625.97

8 491.45 964.57 474 036.92 968.43 475 930.96

9 558.59 957.85 535 047.83 962.42 537 601.18

10 627.30 950.45 596 213.64 955.80 599 572.90

11 697.70 942.31 657 443.73 948.52 661 777.20

12 769.96 933.35 718 639.69 940.50 724 140.06

13 844.26 923.52 779 695.29 931.68 786 582.62

14 920.85 912.74 840 496.65 921.99 849 021.63

15 1 000.00 900.92 900 922.57 911.37 911 370.10

6.1.2 Safe-Side Reserve versus Best Estimate Reserve

The traditional approach to reserving (inmost countries of Continental Europe) relies
on the adoption of the first-order basis in discounting future benefits and premiums
(see Sect. 5.3.1). Hence, the (individual) reserve constitutes a prudential (or “safe-
side”) evaluation of the insurer’s liability. However, the “degree” of prudence cannot
be easily determined. We also recall that, in the case of significant changes in the
scenario, a consequent shift to a new reserving basis is required, as described in
Sect. 5.3.4.

A different approach to reserving, which explicitly allows for risks and for a
chosen prudence target, can be defined. In what follows, we refer to a term insurance
(namely, with S = 0), with annual level premiums P payable throughout the whole
policy duration, and, in particular:

• we disregard expenses and expense loadings;
• we focus on the mortality risk only, thus disregarding investment risks, lapses, and
so on.

Although these assumptions lead to a very simplified setting,many important features
of the different approach to reserving can be captured.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5


326 6 Reserves and Profits in a Life Insurance Portfolio

The (traditional) prospective reserve at time t, for the insurance product we are
dealing with, is given by:

Vt = C m−tA
′
x+t − P ä′

x+t:m−t� (6.1.5)

If we assume, for discounting future benefits and future premiums, the second-
order (or realistic) basis, we obtain the “best estimate” assessment of the policy
reserve, shortly the (individual) best estimate reserve (or central estimate reserve):

V [BE]
t = C m−tA

′′
x+t − P ä′′

x+t:m−t� (6.1.6)

(see also Sect. 5.5.5).
As the first-order basis relies on a mortality higher than that included in the

second-order basis, we have:

m−tA
′′
x+t < m−tA

′
x+t (6.1.7a)

a′′
x+t:m−t� > a′

x+t:m−t� (6.1.7b)

and hence
V [BE]

t < Vt (6.1.8)

The difference Vt − V [BE]
t represents the safety margin implied by the adoption of

the first-order basis in the assessment of the policy reserve Vt . In particular, adverse
fluctuations in mortality can be faced thanks to this margin.

6.1.3 The Risk Margin

Moving from a single policy to a portfolio, in particular a generation of “identical”
policies, we assume that, at time t, the portfolio consists of Nt policies (with Nt a
given number). The traditional reserve is then given by NtVt (see Sect. 6.1.1) and the
best estimate reserve by NtV

[BE]
t .

As the safety margin aims at facing the portfolio riskiness, it can also be denoted
as the risk margin. Thus, the risk margin at the portfolio level, RMt , is given by:

RMt = Nt (Vt − V [BE]
t ) (6.1.9)

However, a sound approach to the management of the insurer’s risks requires an
appropriate quantification of the relevant impact on portfolio results. This means
that, rather than starting from a generic prudential assessment of the reserve and
then finding the resulting risk margin according to (6.1.9), the risk margin should be
determined depending on the insurer’s risk profile, quantified by a convenient risk
measure.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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We refer to the following random quantities, all defined for the portfolio:

• Nt+h, namely the random number of policies still in-force at time t + h; then, for
h = 0, 1, . . . , m − t − 1, Dt+h = Nt+h − Nt+h+1 denotes the random number of
insureds dying between time t + h and t + h + 1;

• Y [P](t, m), defined as the random present value at time t of future benefits, that is

Y [P](t, m) = C
m−t−1∑

h=0

(1 + i′′)−(h+1)Dt+h (6.1.10)

• X[P](t, m), defined as the random present value at time t of future premiums, that is

X[P](t, m) = P
m−t−1∑

h=0

(1 + i′′)−hNt+h (6.1.11)

• Z [P](t, m), defined as the random present value at time t of the portfolio result over
the residual portfolio duration (see below for the formal definition).

To define Z [P](t, m), we note what follows. It can be shown, with a little algebra,
that, if we calculate the expected values of Y [P](t, m) and X[P](t, m) according to the
second-order basis, we obtain:

E[Y [P](t, m)]−E[X[P](t, m)] = Nt

[
C m−tA

′′
x+t − Pä′′

x+t:m−t�
]

= NtV
[BE]
t (6.1.12)

namely, the best estimate portfolio reserve.We assume that an amount of assets equal
to Nt V [BE]

t is available at time t, so that the reserve plus the future premiums meet
the future benefits. Hence, we define the random present value of the portfolio result
as follows:

Z [P](t, m) = NtV
[BE]
t + X[P](t, m) − Y [P](t, m) (6.1.13)

From (6.1.12), we find that, according to the realistic basis, E[Z [P](t, m)] = 0.
If only the amount Nt V [BE]

t is available to meet future benefits net of future
premiums, the probability of a negative result is very high. Thus, a further amount
should be available. Appropriate risk measures can help in determining this amount.
Of course, risk measures should rely on the probability distribution of Z [P](t, m),
which can be estimated via stochastic simulation (see Sect. 3.10.3). Once the function
ΦZ [P](t,m), defined as

ΦZ [P](t,m)(z) = P[Z [P](t, m) ≤ z] (6.1.14)

has been constructed, we can assume, for example, the VaR at a given confidence
level as the risk measure (see Sect. 1.5.4). Thus, if 1−α denotes the confidence level,
we can set:

RMt = −VaRα (6.1.15)

http://dx.doi.org/10.1007/978-3-319-21377-4_3
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 6.1 The probability
distribution of Z [P](t, m)

α

VaRα E[Z[P]
(t,m)]

0 

Fig. 6.2 The probability
distribution of Z [P][RM](t, m)

0 

E[Z [P][RM]
(t,m)] = RMt

α

If we assume that the amount RMt “belongs” to the portfolio (and, actually, it
should be financed, at least to some extent, by the safety loadings embedded in the
premiums already cashed), the random present value of the portfolio result can be
redefined as follows:

Z [P][RM](t, m) = Z [P](t, m) + RMt = NtV
[BE]
t + RMt + X[P](t, m) − Y [P](t, m)

(6.1.16)

Figure6.1 shows a graph of the probability distribution of Z [P](t, m) (assumed
to be continuous, for simplicity), whereas Fig. 6.2 refers to the distribution of
Z [P][RM](t, m).

Example 6.1.2 We refer to a portfolio of 10-year term insurances, with C = 1 000
and annual premium P = 1.93 payable for the whole policy duration. Age at entry
is x = 40. The first-order basis is TB1 = (0.02,LT1), whereas the realistic basis is
TB2 = (0.03,LT2). Table6.2 shows the safe-side reserve, the best estimate reserve,
and the reserve including the risk margin at time t = 3, for three portfolio sizes. The
following aspects should be stressed:

• the lower is α, the higher is the risk margin;
• for any given α, the risk margin depends on the portfolio size: small portfo-
lios require a risk margin very high in relative terms, as can be seen compar-
ing N3V [BE]

3 + RM3 to N3V [BE]
3 (which is obviously proportional to the portfolio

size). ❑
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Table 6.2 Safe-side reserve, best estimate reserve and reserve including risk margin

N3 N3V3 N3V [BE]
3 V [P]

3 = N3V [BE]
3 + RM3

α = 0.25 α = 0.10 α = 0.05

100 192.00 29.03 550.05 1 418.41 2 173.86

1 000 1 920.05 290.32 2 282.10 4 382.54 5 835.17

10 000 19 200.45 2 903.22 7 295.59 13 519.05 17 494.89

Remark Various approaches to the assessment of the risk margin can be proposed and have
been actually adopted in the insurance technique. Although approaches based on appropriate risk
measures (like the VaR and the TailVaR) are rigorous, other procedures can simplify the assessment
of the risk margin. This is the case, for example, of the calculation procedure proposed within the
project “Solvency 2.” See also Sect. 6.1.5.

6.1.4 The Portfolio Liability and Beyond

Assume that the portfolio reserve, V [P]
t , is calculated as the best estimate reserve plus

the risk margin. Further, assume that the risk margin is given by the VaR at a stated
confidence level, as described in Sect. 6.1.3; clearly, it depends on the portfolio size
Nt . In formal terms, we have:

V [P]
t = NtV

[BE]
t + RMt(Nt) (6.1.17)

for t = 0, 1, 2, . . . .
As in Sect. 6.1.1, refer to a portfolio initially consisting of N0 “identical” policies

(withN0 a given number). At (future) time t, the portfolio reserve, defined by (6.1.17),
is a random amount, as the portfolio size Nt is a random number. For any given
sequence n1, n2, . . . of numbers of policies in-force, we obtain the estimated future
portfolio reserve:

V̂ [P]
t = ntV

[BE]
t + RMt(nt) (6.1.18)

Example 6.1.3 We refer to the portfolio described in Example 6.1.2. We assume
that the portfolio initially consists of N0 = 1 000 policies; we set nt = E[Nt], for
t = 1, 2, . . . , 10, according to the life table LT2. We assume α = 0.25. Table6.3
shows the best estimate reserve and the portfolio reserve V̂ [P]

t including the risk
margin. Note that the negative values of V [BE]

1 and V [BE]
2 have been replaced by 0. ❑

Portfolio liabilities are counterbalanced by assets. If the assets have to be assessed
at their market value, assumed as the “true” or “fair” value, also the related lia-
bilities should be assessed, for consistency, at market value. Thus, the so-called
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Table 6.3 Best estimate reserve and reserve including risk margin

t nt V [BE]
t ntV

[BE]
t V̂ [P]

t

0 1 000.00 0.00 0.00 0.00

1 998.91 0.00 0.00 1 235.15

2 997.71 0.00 0.00 1 801.19

3 996.38 0.29 289.27 2 269.33

4 994.90 0.81 801.55 2 068.91

5 993.27 1.18 1 169.16 1 816.03

6 991.47 1.38 1 370.71 1 641.64

7 989.47 1.40 1 382.41 1 566.16

8 987.26 1.19 1 177.86 1 732.03

9 984.82 0.74 727.85 1 258.37

10 982.11 0.00 0.00 0.00

mark-to-market approach to liability assessment should be adopted. However, a
problem arises: is a (reliable) market value of liabilities available?

As insurer’s liabilities are only traded in markets which cannot provide a reliable
fair value (for example, the reinsurance market), the application of the mark-to-
market approach is restricted to liabilities which can be perfectly hedged by assets
traded on appropriate markets. This is the case, in particular, of the liabilities related
to unit-linked insurance products (see Chap.7).

Conversely, Eqs. (6.1.17) and (6.1.18) implement the so-called mark-to-model
approach to the assessment of the portfolio liabilities. This approach relies on an
actuarial model whose output should provide a reasonably fair value of the liabilities.

More assets than those just backing the fair value of the liabilities are usually
needed to face risks. To this purpose, shareholders’ capital must be allocated and
assigned to the portfolio. The amount to be allocated to a portfolio (and, more in
general, to a life insurance business) is determined according to a stated solvency
target. Thus, the total amount of assets backing the insurer’s liabilities (assessed in
terms of fair value) and the shareholders’ capital must fulfill the adequacy require-
ment, as stated by the supervisory authorities, or by the company management, if the
latter results in an amount higher than that required by the authorities.

The shareholders’ capital needed to fulfill the adequacy requirement can be called
the required capital, whereas the (possibly) remaining shareholders’ capital consti-
tutes the excess capital (see Fig. 6.3).

6.1.5 Risk Margin: The “Cost of Capital” Approach

We describe an approach to the calculation of the risk margin, which constitutes a
practicable alternative to the VaR approach.

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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We define the target capital at time t, TCt , as the amount of assets net of liabilities,
which is required (in particular, by the supervisory authority) for solvency purposes;
assets are assessed at their market value, liabilities at their best estimate value. We
assume that the target capital consists of two components, namely the risk margin,
RMt , and the solvency capital requirement, SCRt (see Fig. 6.4). Thus:

TCt = RMt + SCRt (6.1.19)

Hence, the adequacy requirement defined in Sect. 6.1.4 is fulfilled by: (1) the best
estimate reserve, (2) the risk margin, and (3) the solvency capital requirement.

Further, we assume that SCRt can be determined (at least approximately) by
adopting a given formula. The risk margin, RMt , is then defined as the cost (beyond
the risk-free rate) of the solvency capital which is required for the run-off of the
portfolio in the case of insurer’s default at the end of the current year (assuming that
another insurer is charged with the portfolio itself). Hence:

• the risk margin makes possible the run-off of the portfolio after default;
• without risk margin, no other insurer would be available to be charged with the
portfolio itself;

• the riskmargin “belongs” to the policyholders, because in the case of default itmust
be transferred together with the portfolio; thus, it is not a part of the shareholders’
capital.
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To illustrate the procedure for calculating the target capital, we refer to a portfolio
of identical policies, with total duration m years. We denote by ρ the risk discount
rate; of course, ρ > rf , where rf is the risk-free rate. We assume that:

• ρ is the return required on the shareholders’ capital;
• the capital allocated to the portfolio is invested at the risk-free rate.

Hence, the spread ρ − rf represents the cost of capital not covered by the investment
yield.

The risk margin at time t is formally defined as follows:

RMt = (ρ − rf)

(
ŜCRt+1(1 + rf)

−1 + ŜCRt+2(1 + rf)
−2

+ · · · + ŜCRm−1(1 + rf)
−m+t+1

)
(6.1.20)

where ŜCRt+h denotes an estimate, at time t, of the solvency capital requirement
at time t + h. Such an estimate should be based on the projection of the quantities
involved in the calculation of the solvency capital requirement at time t (or in the
approximation adopted).

Finally, the target capital at time t is given by Eq. (6.1.19).

6.2 The Total Profit

The assessment of expected profits constitutes one of the most important topics in
life insurance mathematics.

A first insight into the assessment of expected profits has been provided in
Sect. 4.3.8, just comparing actuarial values of benefits at the policy issue, calculated
by adopting a pricing basis and a scenario basis, respectively. A further insight has
been given in Sect. 5.5. By using recurrent equations of the policy reserve, expected
annual profits have been defined. Then, the expected total profit has been defined, in
terms of either the expected annual profits or the expected annual cash flows.

Several items must still be added in order to get to a more complete setting. In
particular, we have to account for the insurer’s expenses and the related premium
loadings, as well as policyholders’ lapses and surrenders.

Moreover, by referring to a portfolio of policies, and allowing for the portfolio
reserve, we can define a more natural framework, closer to the valuation needs which
emerge in the insurance practice.Although this extended frameworkmakes it possible
to perform risk analysis, for brevity we will deal with expected values only.

We focus on the insurance product we have addressed while describing the risk
and savings components of the life insurance business (for the relevant notation, and

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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the expression of the net annual level premium, see Sect. 5.4.1). To start, we disregard
expenses and related loadings, as well as lapses and surrenders. These items will be
included into the model in Sect. 6.4.

6.2.1 The Life Fund

We refer to a portfolio of “identical” policies, issued at time t = 0. The only causes
of exit are the death of the insured and the maturity. We assume that the portfolio
consists of a generation of policies, hence closed to new entries.

We define the following quantities:

• N0, the (given) initial number of policies in the portfolio;
• Nt , the random number of policies in the portfolio at time t, t = 1, 2, . . . , m;
• Dt = Nt − Nt+1, the random number of insureds dying between time t and t + 1;
• F[P]

t , the amount of the portfolio fund (or life fund) at time t, t = 0, 1, . . . , m.

We assume
F[P]
0 = 0 (6.2.1)

Then, according to information available at time 0, the behavior of the portfolio fund
is described by the following recursive relations:

(F[P]
t + PNt)(1 + i′′) − CDt = F[P]

t+1; t = 0, 1, . . . , m − 2 (6.2.2a)

(F[P]
m−1 + PNm−1)(1 + i′′) − CDm−1 − SNm = F[P]

m (6.2.2b)

where i′′ denotes the (realistic) estimated yield from the fund investment.
We note that:

• the only cause of randomness we are allowing for is the mortality in the portfolio;
random yields could be introduced into the model, but this would result in a much
higher complexity;

• the random amount F[P]
t (if positive) represents the portfolio assets cumulated

up to time t, excluding allocations of shareholders’ capital, and releases of profits
as well;

• the random amount F[P]
t might take negative values, for example, because of an

unexpected high mortality; in this case, money should be borrowed to reinstate the
fund;

• the assumption F[P]
0 = 0 is rather unrealistic (although it makes some interpreta-

tions much easier); an initial allocation of assets to the portfolio lowers, of course,
the probability of negative values for F[P]

t (see, for example, Sect. 2.7.3);
• the final value of the fund, F[P]

m , is net of the benefits paid to the insureds alive at
maturity (see Eq. (6.2.2b)); hence, it represents the random total profit cumulated
at the end of the portfolio duration.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Remark The adjective “total” is herein used to denote the profit related to the whole duration of
the portfolio.

6.2.2 The Expected Life Fund and the Expected Total Profit

To simplify the notation, we denote the expected values as follows: N̄t = E[Nt],
F̄[P]

t = E[F[P]
t ], and so on.

The calculation of expected values of the life fund relies onmortality assumptions.
To this purpose, we adopt a realistic life table, which constitutes, together with the
interest rate i′′, the scenario basis, namely TB2.

We note that (according to information available at time 0)

N̄t = N0 tp
′′
x (6.2.3)

D̄t = N0 t|1q′′
x (6.2.4)

with tp′′
x and t|1q′′

x taken from the realistic life table. Given assumption (6.2.1) and
recursive relations (6.2.2), we find:

(F̄[P]
t + PN̄t)(1 + i′′) − CD̄t = F̄[P]

t+1; t = 0, 1, . . . , m − 2 (6.2.5a)

(F̄[P]
m−1 + PN̄m−1)(1 + i′′) − CD̄m−1 − SN̄m = F̄[P]

m (6.2.5b)

The amount F̄[P]
m is the expected total profit, cumulated at the end of the portfolio

duration. Indeed, at timem the portfolio is no longer uncumberedwith any obligation.

Remark It is worth noting that the relationships among the random quantities (F[P]
t , Nt , Dt)

are linear (see Eqs. (6.2.2)). Hence, the same linear relations link the relevant expected values (see
Eqs. (6.2.5)). This feature also regards future developments and allows us to express relationships
directly in terms of expected values.

By solving Eqs. (6.2.5), we obtain the following explicit expression for the
expected life fund:

F̄[P]
t+1 =

t∑
h=0

(
PN̄h(1 + i′′) − CD̄h

)
(1 + i′′)t−h; t = 0, 1, . . . , m − 2 (6.2.6a)

F̄[P]
m =

m−1∑
h=0

(
PN̄h(1 + i′′) − CD̄h

)
(1 + i′′)m−(h+1) − SN̄m (6.2.6b)

The following quantities

CF
[P]
h+1 = PN̄h(1 + i′′) − CD̄h; h = 0, 1, . . . , m − 2 (6.2.7a)

CF
[P]
m = PN̄m−1(1 + i′′) − CD̄m−1 − SN̄m (6.2.7b)
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Table 6.4 The life fund in a term insurance portfolio

t F̄[P]
t N̄t PN̄t CD̄t CF

[P]
t+1

0 0.00 10 000.00 19 265.25 10 879.26 8963.95

1 8963.95 9989.12 19 244.29 12 035.23 7786.38

2 17 019.25 9977.09 19 221.10 13 316.31 6481.43

3 24 011.26 9963.77 19 195.45 14 735.32 5036.00

4 29 767.59 9949.03 19 167.06 16 306.38 3435.69

5 34 096.31 9932.73 19 135.65 18 045.01 1664.71

6 36 783.91 9914.68 19 100.88 19 968.17 −294.26

7 37 593.17 9894.71 19 062.41 22 094.41 −2 460.13

8 36 260.84 9872.62 19 019.85 24 443.96 −4 853.51

9 32 495.15 9848.18 18 972.76 27 038.79 −7 496.85

10 25 973.16 9821.14

are the values, at the end of the relevant year, of the expected annual cash flows.
Thus, the expected fund F̄[P]

t+1 is the accumulated value of all the expected annual

cash flows up to time t +1. In particular, F̄[P]
m , namely the expected value of the total

profit cumulated at maturity, is the accumulated value of all the expected annual cash
flows.

Example 6.2.1 Table6.4 refers to a portfolio of term insurance policies; according
to the notation defined in Sect. 5.4.1, we then have S = 0,C > 0. Data are as follows:
N0 = 10 000, C = 1 000, x = 40, m = 10. Annual level premiums, P, are payable
throughout the whole policy duration. The pricing basis is TB1 = (0.02,LT1). We
then find: P = 1.93. Expected values are calculated by adopting the scenario basis
TB2 = (0.03,LT2).

We note that the expected annual cash flows cannot be interpreted as expected
annual profits. Although the premium inflow is, in the first years, higher than the
benefit outflow, a share of this differencemust be reserved tomeet the benefit outflow
in the last years, when premiums are no longer sufficient.

Table6.5 refers to a portfolio of (standard) endowment insurances; according
to the notation defined in Sect. 5.4.1, we then have S = C. Data are as follows:
N0 = 10 000, C = 1 000, x = 50, m = 15. Annual level premiums, P, are payable
throughout the whole policy duration. The pricing basis is TB1 = (0.02,LT1). We
then find: P = 59.54. Expected values are calculated by adopting the scenario basis
TB2 = (0.03,LT2).

It is apparent that, also in this case, the expected cash flows cannot be interpreted
as expected annual profits. Indeed, a significant share of the difference between
each annual premium inflow and death benefit outflow must be reserved to meet the
survival benefit outflow at maturity. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Table 6.5 The life fund in an endowment insurance portfolio

t F̄[P]
t N̄t PN̄t CD̄t SN̄m CF

[P]
t+1

0 0.00 10 000.00 595 400.00 30447.33 − 582804.13

1 582804.13 9969.55 593 576.97 33663.70 − 577720.57

2 1 178 008.83 9935.89 591 572.66 37208.60 − 572111.24

3 1 785 460.33 9898.68 589 357.30 41112.36 − 565925.66

4 2 404 949.80 9857.57 586 909.51 45407.36 − 559109.43

5 3 036 207.73 9812.16 584 206.01 50128.03 − 551604.16

6 3 678 898.12 9762.03 581 221.43 55310.67 − 543347.41

7 4 332 612.47 9706.72 577 928.29 60993.35 − 534272.79

8 4 996 863.64 9645.73 574 296.81 67215.59 − 524310.13

9 5 671 079.68 9578.51 570 294.86 81441.57 − 501422.98

10 6 354 597.82 9504.50 561 038.96 98315.09 − 474064.76

13 8 452 858.09 9235.21 549 855.02 107 842.36 − 458508.31

14 9 164 952.14 9127.37 543 434.19 118 138.69 − −8 567 631.47

15 872269.24 9009.23 9 009 230.00

6.2.3 The Total Profit: An Alternative Interpretation

Let PL
[P]

denote the present value at time 0 of the expected total profit (or loss), that
is

PL
[P] = F̄[P]

m (1 + i′′)−m (6.2.8)

From (6.2.6b) we obtain:

PL
[P] =

m−1∑
h=0

PN̄h (1 + i′′)−h −
m−1∑
h=0

CD̄h (1 + i′′)−(h+1) − SN̄m (1 + i′′)−m (6.2.9)

Let P′′ denote the second-order premium, namely the premium such that, at the
policy level, we have

P′′ ä′′
x:m� = C mA′′

x + S mE′′
x (6.2.10)

that is:

m−1∑
h=0

P′′
hp′′

x (1 + i′′)−h =
m−1∑
h=0

C h|1q′′
x (1 + i′′)−(h+1) + S mp′′

x (1 + i′′)−m (6.2.11)

At the portfolio level, Eq. (6.2.11) yields:

m−1∑
h=0

P′′ N̄h (1 + i′′)−h =
m−1∑
h=0

CD̄h (1 + i′′)−(h+1) + SN̄m (1 + i′′)−m (6.2.12)
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Table 6.6 Individual
premium margins

Insurance product P P′′ P − P′′

Term insurance 1.93 1.71 0.22

Endowment insurance 59.54 54.84 4.70

Looking at Eq. (6.2.9), we finally obtain the following relations:

PL
[P] =

m−1∑
h=0

(P − P′′)N̄h (1 + i′′)−h (6.2.13)

F̄[P]
m =

m−1∑
h=0

(P − P′′) N̄h (1 + i′′)m−h (6.2.14)

The quantity (P − P′′) N̄h represents the expected annual premium margin at the
portfolio level. Thus, the expected total profit cumulated at maturity, which coincides
with the expected life fund F̄[P]

m , originates from the expected premium margins, as
is rather intuitive.

Remark We note that a result quite similar to that expressed by Eq. (6.2.13) has been obtained at
the policy level; see Eq. (5.5.19).

Example 6.2.2 We refer to a term insurance portfolio and an endowment insurance
portfolio. Data are as in Example 6.2.1. Table6.6 shows level premiums, second-
order level premiums, and premiummargins for the two insurance products. Table6.7
shows the consequent expected premium margins in the two portfolios. ❑

6.3 Expected Annual Profits

Themodel so far developedprovides a synthetic informationon the portfolio expected
profit, that is, the expected total profit cumulated at maturity, F̄[P]

m , and its present

value, PL
[P]
. More detailed results can be achieved by introducing new elements into

the model. In particular, the sequence of annual profits, namely the timing of the
profit, is of great interest under both a theoretical perspective (as seen in Sect. 5.5)
and a practical perspective as well. To this purpose, the portfolio reserve must be
accounted for.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Table 6.7 Expected
premium margins in the
portfolio

t (P − P′′) N̄t

Term insurance Endowment insurance

0 2 213.33 47 009.59

1 2 210.92 46 866.46

2 2 208.26 46 708.21

3 2 205.31 46 533.29

4 2 202.05 46 340.03

5 2 198.44 46 126.57

6 2 194.45 45 890.92

7 2 190.03 45 630.91

8 2 185.14 45 344.18

9 2 179.73 45 028.20

10 44 680.25

11 44 297.39

12 43 876.53

13 43 414.35

14 42 907.39

6.3.1 The Expected Surplus and the Expected Annual Profits

The portfolio reserve at a future time t is the random amount V [P]
t = NtVt (see

Sect. 6.1). Conversely, the estimated portfolio reserve is given by V̂ [P]
t = ntVt , where

nt is the estimated number of policies in the portfolio at that time. In particular, the
expected portfolio reserve is given by V̂ [P]

t = E[V [P]
t ] = N0 tp′′

x Vt (thus, in this case:
nt = N0 tp′′

x ).
As seen in Sect. 6.2.1, the random amountF[P]

t represents (if positive) the portfolio
assets at time t. Conversely, the portfolio liability is expressed by the reserve V [P]

t .
Hence, the difference F[P]

t − V [P]
t represents the (random) cumulated surplus at

time t, as we have excluded capital allocations to the portfolio. This difference also
represents the Net Asset Value (NAV ) pertaining to the portfolio itself.

To describe the evolution of the cumulated surplus, in terms of expected values,
we refer to Eq. (6.2.5a). Then, we subtract V̂ [P]

t+1 in both the left-hand side and the

right-hand side of the equation, and add and subtract V̂ [P]
t (1 + i′′) in the left-hand

side. Obvious adjustments are required for Eq. (6.2.5b). We obtain:

(F̄[P]
t − V̂ [P]

t )(1 + i′′) + (V̂ [P]
t + PN̄t)(1 + i′′) − CD̄t − V̂ [P]

t+1 = F̄[P]
t+1 − V̂ [P]

t+1; t = 0, 1, . . . , m − 2

(6.3.1a)

(F̄[P]
m−1 − V̂ [P]

m−1)(1 + i′′) + (V̂ [P]
m−1 + PN̄m−1)(1 + i′′) − CD̄m−1 − SN̄m = F̄[P]

m (6.3.1b)
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with F̄[P]
0 = 0 (see assumption (6.2.1)), and, of course, V̂ [P]

0 = 0. Further, note that

we set V̂ [P]
m = 0, as we have assumed that the life fund at time m is net of the outflow

for maturity benefits.

Let PL
[P]
t+1 denote the expected annual variation in the cumulated surplus, namely

the annual contribution to the cumulated surplus, which clearly represents the
expected annual profit (or loss):

PL
[P]
t+1 = (F̄[P]

t+1 − V̂ [P]
t+1) − (F̄[P]

t − V̂ [P]
t ) (6.3.2)

From Eqs. (6.3.1), we obtain the following expressions:

PL
[P]
t+1 = (F̄[P]

t − V̂ [P]
t )i′′ + (V̂ [P]

t + PN̄t) (1 + i′′) − CD̄t − V̂ [P]
t+1; t = 0, 1, . . . , m − 2

(6.3.3a)

PL
[P]
m = (F̄[P]

m−1 − V̂ [P]
m−1)i

′′ + (V̂ [P]
m−1 + PN̄m−1) (1 + i′′) − CD̄m−1 − SN̄m (6.3.3b)

Looking at Eqs. (6.3.3), two components of the annual profit can be singled out. The
quantity

PL
[P][NAV]
t+1 = (F̄[P]

t − V̂ [P]
t )i′′ (6.3.4)

represents the interest on the NAV. Conversely, the component

PL
[P][I]
t+1 = (V̂ [P]

t + PN̄t) (1 + i′′) − CD̄t − V̂ [P]
t+1; t = 0, 1, . . . , m − 2 (6.3.5a)

PL
[P][I]
m = (V̂ [P]

m−1 + PN̄m−1) (1 + i′′) − CD̄m−1 − SN̄m (6.3.5b)

represents the industrial profit.
By using Eqs. (6.2.7), we obtain the following expression

PL
[P][I]
t+1 = CF

[P]
t+1 + V̂ [P]

t (1 + i′′) − V̂ [P]
t+1; t = 0, 1, . . . , m − 1 (6.3.6)

(with V̂ [P]
0 = V̂ [P]

m = 0)which shows that the industrial profits arise from the portfolio

cash flows adjusted by accounting for the variation in the portfolio reserve, V̂ [P]
t −

V̂ [P]
t+1, and the interest on the reserve at the beginning of the year, V̂ [P]

t i′′.

Remark We note that a relation between annual profits and annual cash flows, quite similar to that
expressed by Eq. (6.3.6), holds at the policy level as shown by Eqs. (5.5.13).

Example 6.3.1 Tables6.8 and 6.9 show the expected portfolio reserve, the NAV,
the expected annual profits, and the related components, in a term insurance and in
an endowment insurance portfolio, respectively. Data are as in Example6.2.1. It is
interesting to compare the expected annual profits with the expected annual cash
flows (see Tables6.4 and 6.5): the role of the portfolio reserve (and, in particular, of
the variation in the portfolio reserve) clearly appears. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Table 6.8 Expected portfolio reserve and expected profits in a term insurance portfolio

t V̂ [P]
t F̄[P]

t − V̂ [P]
t PL

[P]
t PL

[P][NAV]
t PL

[P][I]
t

0 0.00 0.00 − − −
1 7585.09 1378.85 1 378.85 0.00 1 378.85

2 14 016.80 3002.45 1 623.59 41.37 1 582.23

3 19 130.89 4880.37 1 877.92 90.07 1 787.85

4 22 745.28 7022.31 2 141.94 146.41 1 995.53

5 24 658.24 9438.07 2 415.77 210.67 2 205.10

6 24 646.35 12 137.56 2 699.48 283.14 2 416.34

7 22 462.43 15 130.74 2 993.18 364.13 2 629.05

8 17 833.19 18 427.65 3 296.92 453.92 2 843.00

9 10 456.74 22 038.41 3 610.76 552.83 3 057.93

10 0.00 25 973.16 3 934.75 661.15 3 273.59

Table 6.9 Expected portfolio reserve and expected profits in an endowment insurance portfolio

t V̂ [P]
t F̄[P]

t − V̂ [P]
t PL

[P]
t PL

[P][NAV]
t PL

[P][I]
t

0 0.00 0.00 − − −
1 573687.47 9116.66 9116.66 0.00 9116.66

2 1 153 665.85 24342.98 15226.32 273.50 14 952.82

3 1 739 553.40 45906.93 21563.95 730.29 20 833.66

4 2 330 915.86 74033.94 28127.01 1377.21 26 749.80

5 2 927 262.45 108 945.28 34911.34 2221.02 32 690.32

6 3 528 041.94 150 856.18 41910.90 3268.36 38 642.54

7 4 132 638.76 199 973.72 49117.54 4525.69 44 591.85

8 4 740 369.25 256 494.39 56520.68 5999.21 50 521.46

9 5 350 478.29 320 601.39 64106.99 7694.83 56 412.16

10 5 962 136.36 392 461.46 71860.07 9618.04 62 242.03

11 6 574 437.28 472 221.46 79760.00 11 773.84 67 986.15

12 7 186 396.87 560 004.42 87782.96 14 166.64 73 616.32

13 7 796 952.88 655 905.21 95900.79 16 800.13 79 100.66

15 0.00 872 269.24 112 283.58 22 799.57 89 484.01

Remark The rationale underlying the definitionof the expected annual profitswehave just proposed
is quite different from that underpinning the profit assessment within the framework presented in
Sect. 5.5. We note that, according to Eq. (5.5.2), interest originate from the reserve and the annual
premiumonly,whereas, according to the life fund logic, the investment of both the cumulated surplus
and the (portfolio) reserve plus the annual premiums is accounted for (see, for example, Eqs. (6.3.3)–
(6.3.5)). Indeed, the logic underlying Eq. (5.5.2) does not allow for any profit accumulation. The
two approaches can be considered as particular implementations of a more general model for profit
assessment. The approach leading to (5.5.2) is based on the so-called profits-released assumption,

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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whereas the approach involving the life fund analysis is based on the profits-retained assumption.
Nonetheless, thanks to the splitting of the annual profit into the industrial profit and the interest on
the NAV, we can easily recognize in the industrial component (see Eqs. (6.3.5)) the logic underlying
(5.5.2).

6.3.2 The Role of the Portfolio Reserve

By solving Eqs. (6.3.1), we obtain the following explicit expressions for the expected
cumulated surplus:

F̄[P]
t+1 − V̂ [P]

t+1 =
t∑

h=0

(
(V̂ [P]

h + PN̄h)(1 + i′′) − CD̄h − V̂ [P]
h+1

)
(1 + i′′)t−h; t = 0, 1, . . . , m − 2

(6.3.7a)

F̄[P]
m =

m−1∑
h=0

(
(V̂ [P]

h + PN̄h)(1 + i′′) − CD̄h − V̂ [P]
h+1

)
(1 + i′′)m−(h+1) − SN̄m (6.3.7b)

From Eqs. (6.3.5) it follows that (6.3.7b) can also be written as follows:

F̄[P]
m =

m−1∑
h=0

PL
[P][I]
h+1 (1 + i′′)m−(h+1) (6.3.8)

which expresses the cumulated surplus as the accumulated value of the industrial
profits. Further, we have:

PL
[P] =

m−1∑
h=0

PL
[P][I]
h+1 (1 + i′′)−(h+1) (6.3.9)

It is possible to prove that, assuming V̂ [P]
0 = V̂ [P]

m = 0, Eq. (6.3.7b) yields:

F̄[P]
m =

m−1∑
h=0

(
PN̄h(1 + i′′) − CD̄h

)
(1 + i′′)m−(h+1) − SN̄m (6.3.10)

which coincides with (6.2.6b). Indeed, all the other reserve values annul each other.
According to (6.3.10), the expected profit cumulated at maturity coincides with

the accumulated value of the expected annual cash flows. Hence, the reserve profile
does not affect the amount of the total profit, while it does affect the annual industrial
profits (see Eqs. (6.3.5)) and then the timing of the total profit.

Example 6.3.2 We refer to an endowment insurance portfolio. Data are as in Exam-
ple 6.2.1. Table6.10 shows the timing of the industrial profits, originated by three

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Table 6.11 Expected profits according to various reserving profiles

t V̂ [P][BE]
t PL

[P][I][BE]
t V̂ [P][BE]

t + RMt PL
[P][I][BE+RM]
t

0 0.00 − 0.00 −
1 6131.41 576 672.72 266864.82 315 939.31

2 584035.92 0.00 852553.45 37.89

3 1 173 668.24 0.00 1 446 631.95 3609.34

4 1 774 803.95 0.00 2 048 703.30 7253.27

5 2 387 157.50 0.00 2 658 305.54 10968.29

6 3 010 376.38 0.00 3 274 906.24 14752.63

7 3 644 035.08 0.00 3 897 896.70 18604.13

8 4 287 628.93 0.00 4 526 586.26 22520.14

9 4 940 567.92 0.00 5 160 196.43 26497.55

10 5 602 170.71 0.00 5 797 855.36 30532.71

11 6 271 658.81 0.00 6 438 592.59 34621.41

12 6 948 151.37 0.00 7 081 334.30 38758.85

13 7 630 660.67 0.00 7 724 899.52 42939.58

14 8 318 088.80 0.00 8 367 997.34 47157.48

15 9 009 225.74 0.00 9 009 225.74 51405.79

F̄[P][BE]
15 = 872 269.24 F̄[P][BE+RM]

15 = 872 269.24

PL
[P][BE] = 559 876.43 PL

[P][BE+RM] = 559 876.43

reserve profiles. The profiles correspond to different interest rates in the reserving
basis, namely 0.00, 0.02 (which coincides with the interest rate in the pricing basis
TB1), and 0.04. Possible negative reserve values have been replaced with 0. We note
that an interest rate lower than that in the pricing basis implies a profit delay, whereas
a higher interest rate implies a profit acceleration. These results can be compared to
those displayed in Table5.11 of Example 5.5.3.

Table6.11 shows the profit timing originated by two reserve profiles: the best
estimate reserve and the best estimate reserve plus the risk margin. The risk margin
has been calculated as described in Sect. 6.1.5; in particular:

• we have assumed ρ = 0.08, rf = 0.02;
• SCRt has been set equal to 10% of the best estimate reserve;

Again, possible negative reserve values have been replaced with 0. ❑

The reserve profile based on the best estimate reserve implies a very particular
timing of the industrial profits, as shown in Table6.11 (and as already seen at the
policy level; see in particular Eqs. (5.5.25)). A formal proof of this specific profit
profile, with reference to a portfolio, follows.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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The policy best estimate reserve of an endowment insurance is defined by
Eq. (5.5.21). At the portfolio level, we assume:

V̂ [P][BE]
t = E[Nt] V [BE]

t (6.3.11)

with E[Nt] = N0 tp′′
x , that is, calculated by adopting the second-order basis TB2.

We then find:

V̂ [P][BE]
t = N0 tp

′′
x (C m−tA

′′
x+t + S m−tE

′′
x+t − P ä′′

x+t:m−t�)

= N0 tp
′′
x

m−t−1∑
h=0

(
C h|1q′′

x+t − P hp′′
x+t (1 + i′′)

)
(1 + i′′)−(h+1) + S m−tp

′′
x+t (1 + i′′)−(m−t)

=
m−t−1∑

h=0

(
C D̄t+h − P N̄t+h (1 + i′′)

)
(1 + i′′)−(h+1) + S N̄m (1 + i′′)−(m−t) (6.3.12)

and finally we have:

V̂ [P][BE]
t = −

m−t−1∑
h=0

CF
[P]
t+h+1 (1 + i′′)−(h+1) (6.3.13)

From Eq. (6.3.13), we immediately obtain the following recursive expression:

V̂ [P][BE]
t+1 = V̂ [P][BE]

t (1 + i′′) + CF
[P]
t+1 (6.3.14)

In particular, Eq. (6.3.13) yields:

V̂ [P][BE]
0 = −

m−1∑
h=0

CF
[P]
h+1 (1 + i′′)−(h+1) = −F̄[P]

m (1 + i′′)−m = −PL
[P]

(6.3.15)

Assume that, for the portfolio reserve, the following profile is chosen:

V̂ [P]
0 = 0; (6.3.16a)

V̂ [P]
t = V̂ [P][BE]

t ; t = 1, 2, . . . , m − 1 (6.3.16b)

V̂ [P]
m = 0 (6.3.16c)

It follows that the industrial profits (see Eq. (6.3.6)) are given by:

PL
[P][I][BE]
1 = −V̂ [P][BE]

1 + CF
[P]
1 =

m−1∑
h=0

CF
[P]
h+1 (1 + i′′)−h = PL

[P]
(1 + i′′)

(6.3.17a)

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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PL
[P][I][BE]
t+1 = V̂ [P][BE]

t (1 + i′′) − V̂ [P][BE]
t+1 + CF

[P]
t+1 = 0; t = 1, 2, . . . , m − 1

(6.3.17b)

Thus, the expected profit entirely emerges in the first year, while the annual profits
are identically equal to zero in all the following years.

Remark The result expressed by Eqs. (6.3.17) holds provided that the scenario assumed at time 0
(namely, the technical basis TB2) keeps its validity throughout the whole duration of the portfolio.
Conversely, if changes in the scenario suggest, at some point, the shift to a different technical basis,
the profit profile will change, and hence profit will emerge at the time of the shift.

6.4 Expected Annual Profits: A More General Setting

Further elements must be added to our model, in order to build-up a more realis-
tic framework for profit assessment. To this purpose, we allow for the following
elements:

• expenses and related loadings;
• lapses and surrenders.

As regards the expense loadings, we refer to the loading structure described in
Sect. 4.5.3. We assume that a realistic estimate of expenses can be expressed by
the same structure, although expense parameters possibly differ from those used in
calculating the premium loading. Let EXt denote the expense at time t related to a
generic policy. Referring to policies with annual premiums payable throughout the
whole policy duration m, and assuming that expenses are charged at the beginning
of each year, we have:

EX0 = α′′ C + β ′′ P[T] + γ ′′ C (6.4.1a)

EXt = β ′′ P[T] + γ ′′ C; t = 1, 2 . . . , m − 1 (6.4.1b)

where α′′, β ′′, and γ ′′ denote the realistic estimation of the expense parameters.
Note that the term α′′ C in Eq. (6.4.1a) should be replaced by δ′′(m) P[T] when the
acquisition costs are expressed in terms of the annual premium.

The random number of in-force policies, Nt , must be redefined because of the
presence of lapses/surrenders. We assume that lapses/surrenders occur at the end of
the generic policy year, before paying the premium due for the following year. Let
At denote the number of policyholders who abandon the contract at time t. Then, we
have:

Nt+1 = Nt − Dt − At+1 (6.4.2)

Let wt denote the probability of abandoning the contract at time t, conditional on
belonging to the portfolio at that time. Hence, the expected values can be calculated
as follows:

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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N̄t = N0 tp
′′
x

t∏
h=1

(1 − wh) (6.4.3)

D̄t = N̄t 1q′′
x+t (6.4.4)

Āt+1 = N̄t(1 − 1q′′
x+t) wt+1 (6.4.5)

Let Rt denote the surrender value at time t (see Sect. 5.7). The path of the port-
folio fund, F[P]

t , in terms of expected values, is described by the following recursive
equations:

(F̄[P]
t + P[T] N̄t − EXtN̄t)(1 + i′′) − CD̄t − Rt+1 Āt+1 = F̄[P]

t+1; t = 0, 1, . . . , m − 2

(6.4.6a)

(F̄[P]
m−1 + P[T] N̄m−1 − EXm−1 N̄m−1)(1 + i′′) − CD̄m−1 − SN̄m = F̄[P]

m (6.4.6b)

which generalize Eqs. (6.2.5). In Eq. (6.4.6b), it is assumed, as is reasonable, that
Am = 0.

Remark We note that, according to Eqs. (6.4.1), all the expenses (the general expenses included)
are defined at individual level. It follows that, at the portfolio level, all the expenses are proportional
to the number of policies in the portfolio, as clearly appears in Eqs. (6.4.6). This implies that no fixed
expenditure is allowed for. A more realistic setting should consider a stepwise profile of general
expenses as a function of the portfolio size. See Fig. 6.5. Possible economies of scale follow.

The expected annual profits and the related components can be determined by
generalizing Eqs. (6.3.3)–(6.3.5). The estimated portfolio reserve, V̂ [P]

t , can either
allow for the expenses and the related premium loadings or not. As we have proved
(see Sect. 6.3.2), the time profile of the reserve does not affect the total profit, whereas
it does affect the annual profits (see Example6.4.1).

Fig. 6.5 Amount of general
expenses as a function of the
portfolio size
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The expected annual profits are then expressed by the following equations:

PL
[P]
t+1 = (F̄[P]

t − V̂ [P]
t )i′′ + (V̂ [P]

t + P[T] N̄t − EXt N̄t) (1 + i′′) − CD̄t − Rt+1 Āt+1 − V̂ [P]
t+1;

t = 0, 1, . . . , m − 2 (6.4.7a)

PL
[P]
m = (F̄[P]

m−1 − V̂ [P]
m−1)i

′′ + (V̂ [P]
m−1 + P[T] N̄m−1 − EXt N̄m−1) (1 + i′′) − CD̄m−1 − SN̄m

(6.4.7b)

The interest on the NAV is given by

PL
[P][NAV]
t+1 = (F̄[P]

t − V̂ [P]
t )i′′ (6.4.8)

whereas the industrial component of the annual profit is expressed as follows:

PL
[P][I]
t+1 = (V̂ [P]

t + P[T] N̄t − EXtN̄t) (1 + i′′) − CD̄t − Rt+1 Āt+1 − V̂ [P]
t+1;

t = 0, 1, . . . , m − 2 (6.4.9a)

PL
[P][I]
m = (V̂ [P]

m−1 + P[T] N̄m−1 − EXtN̄m−1) (1 + i′′) − CD̄m−1 − SN̄m (6.4.9b)

In particular, as V̂ [P]
0 = 0, we have:

PL
[P][I]
1 = (P[T] N̄0 − EX0N̄0) (1 + i′′) − CD̄0 − R1Ā1 − V̂ [P]

1 (6.4.10)

We note what follows:

• the first-year expenses, EX0, include the acquisition costs (see Eq. (6.4.1a)), and
hence are usually much higher than the expenses in the following years;

• the acquisition costs, in the case of periodic premiums, are progressively amortized
throughout the premium payment period (see Eqs. (4.5.4b) and (4.5.7b));

• it follows that, the higher is the reserve V̂ [P]
1 , the lower (and possibly negative) is

the first-year industrial profit; in particular, this happens if V̂ [P]
1 is set equal to the

net premium reserve, rather than the Zillmer reserve (see Sect. 5.6).

Remark As already seen at the policy level (see the Remark in Sect. 5.5.1), the equations which
define the expected annual profits contain the (main) items of the industrial Profit & Loss Statement
(brieflyP & L). Table6.12 displays the items of Eqs. (6.4.9) according to a P&L format. An obvious
adjustment in the benefits is needed when referring to the last year of the policy duration.

Example 6.4.1 We refer to an endowment insurance portfolio. Data are as in Exam-
ple 6.2.1, namely: N0 = 10 000, S = C = 1 000, x = 50, m = 15. Annual level
premiums, P[T], are payable throughout the whole policy duration. The pricing basis
is TB1 = (0.02,LT1). We then find: P = 59.54. We assume the following expense

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Table 6.12 Actuarial values as items of a P & L statement

INDUSTRIAL P & L STATEMENT

Income

Premiums P[T] N̄t

Income from investments (V̂ [P]
t + P[T] N̄t − EXt N̄t) i′′

Expenditure

Benefits paid C D̄t + Rt+1 Āt+1

Portfolio expenses EXt N̄t

Change in liabilities V̂ [P]
t+1 − V̂ [P]

t

Profit (or Loss) PL
[P][I]
t+1

Table 6.13 Probability of surrender

t wt t wt t wt t wt t wt

1 0.05 4 0.03 7 0.03 10 0.03 13 0.03

2 0.02 5 0.03 8 0.03 11 0.03 14 0.00

3 0.06 6 0.03 9 0.03 12 0.03 15 0.00

loading parameters (see Sect. 4.5.3): δ(15) = 0.55, β = 0.04, γ = 0.0015. Hence,
P[T] = 66.60. Surrender values are given by:

Rt =
{
0; t = 1, 2

0.90V [Z]
t ; t ≥ 3

(6.4.11)

The scenario basis is TB2 = (0.03,LT2). As regards surrenders and expenses, we
consider the two following cases.

1. Expense realistic expectation: δ′′ = δ, β ′′ = β, γ ′′ = γ ;
surrender probabilities: wt = 0; t = 1, 2, . . . , 15.

2. Expense realistic expectation: δ′′ = 0.58, β ′′ = 0.04, γ ′′ = 0.0018;
surrender probabilities: see Table6.13.

Tables6.14 and 6.15 show the expected profits in case 1 and 2, respectively. It is
worth noting that, in both cases, the Zillmer reserve leads to a “smoother” annual
profit profile, whereas the net premium reserve causes a heavy loss in the first year
(as we can deduce from Eq. (6.4.10)). Indeed, according to the net premium reserve,
the acquisition costs are charged to the first-year result, disregarding the progressive
amortization. Conversely, this fact does not affect the amount of the total profit,
which is independent of the reserve profile. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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6.5 References and Suggestions for Further Reading

Best estimate reserves and riskmargins constitute recent issues in the actuarial frame-
work. The interested reader should then refer to recent literature addressing risk
management and solvency in the insurance business: for example, Doff (2007) and
Sandström (2006).

Expected profits in the life insurance business are dealt with, from different per-
spectives, in various textbooks. For example, Daykin et al. (1994) presents an inter-
esting scheme for assessing profits arising from one generation of policies.

We recall that the traditional approach to the profit assessment at the policy level
is described by Promislow (2006), whereas a special emphasis on mortality profits
is placed in Gupta and Varga (2002).

Assessment of profits in a profit-testing framework is dealt with by Dickson et al.
(2013). A modern approach to profits (not restricted to life insurance) is proposed in
Chap.16 of Bellis et al. (2003).

Effects of solvency regulation on the emergence of profit are discussed in Chap.9
of Booth et al. (2005). A thorough analysis of expected profits in the context of
evaluation procedures for life insurance portfolios is provided byOlivieri and Pitacco
(2008).



Chapter 7
Linking Life Insurance Benefits to the
Investment Performance

7.1 Introduction

The life insurance products described in the previous chapters are characterized by
fixed benefits (and premiums), i.e., the amount of benefits and premiums is stated at
issue.

Remark It is worth stressing that the expression “fixed benefits” should not be meant as “constant
benefits” but, as specified above, as benefits whose amount is definitively assigned at policy issue.
If the amount of benefits varies in time but in a way specified at issue, we still refer to such an
arrangement aswith fixed benefits. The same terminology applies to premiums; a rating arrangement
based on natural premiums, for example, is considered to be with fixed premiums, as their amount
is univocally defined at the policy issue.

In this chapter, we examine life insurance products whose benefit amount depends
either on the return on investments, market interest rates, stock-market indexes, or
other financial indexes. The purpose is to provide a return on the investment of the
policyholder which is higher than the usual technical interest rate, and in any case in
line with the prevailing market rates for the class of assets backing the reserve. We
recall that since the technical interest rate is guaranteed for the whole (long) duration
of the contract, it must be set at a low level, to avoid major risks for the insurer.
Clearly, insurance products for which there is an interest in realizing a linking to
a financial index are those with a large savings component, i.e., those with a large
reserve (and then, a large investment) in respect of the insured amount, such as
endowments, whole life assurances, and life annuities.

Aswe are going to describe in this chapter, the linking of benefits to the investment
performance can be realized in differentways. Basically, whatmakes the difference is
how financial risk is shared between the insurer and the policyholder. In this respect,
the following classes of life insurance products can be identified:

• policies with embedded financial guarantees (participating, with-profit and uni-
versal life policies);

• policies without financial guarantees (unit-linked and universal life policies);

© Springer International Publishing Switzerland 2015
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• policies with explicit financial guarantees (unit-linked and universal life policies
with minimum guarantees, index-linked policies, variable annuities).

To better understand the technical features of the life insurance policies with
benefits linked to the investment performance, it is interesting to investigate how the
various mechanisms that we are going to examine were introduced. As mentioned
above, the products we refer to are those with a large reserve in respect of the insured
amount, i.e., those whose underlying purpose is not only the insurance protection,
but also savings.

The idea behind policy designs with a linking to the investment performance is
to share investment profits, and possibly losses, between the insurer and the policy-
holder. The idea of sharing profits with the policyholders is not new in life insurance.
There is a tradition in the UK and German markets in particular, which dates back to
the nineteen century, andwhich in earlier times concerned industrial or balance-sheet
profits. In UK, the traditional product realizing the linking of benefits to profits is
the with-profit policy, under which in each year the benefit amount is increased by
the so-called bonus.

Apart from these examples, life insurance products have been characterized by
fixed benefits until the 1960s of the last century. At that time, some important innova-
tions were introduced. In UK, the early forms of unit-linked policies were designed,
under which the return on investments is not guaranteed; the assets backing the
reserve can then be selected out of classes of securities riskier (and, on average,
more rewarding) than the traditional ones (typically, government, or high-quality
bonds). Conversely, in the US a form of flexibility was introduced into the premi-
ums, whose amount could be chosen (possibly within a given band) year by year by
the policyholder.

Many innovations were introduced in the 1970s, in contrast to the dramatic
decrease of the volume of the lines of business with a large savings component,
due to high inflation rates. It is worth noting that the long duration of life policies
and the nature of the insurer’s liability (which concerns the amount of the benefit,
and not its real value) expose the policyholder to inflation risk. When the inflation
rate is low and interest rates are positive in real terms, the risk is not perceived;
vice versa, when the inflation rate is very high (as it was during the Seventies) the
depreciation of the insured amount is too strong to make the product attractive in
respect of alternative investment solutions. The life insurance industry reacted to the
negative underwriting trends by linking benefits to the inflation rate or to the return
on investment. Due to the limited availability of inflation-linked securities, most of
the insurers focused on the linking to the investment returns, developing the so-called
participating policies.

Participating policies have gained large market shares during the 1980s, in par-
ticular in continental Europe. At the same time, new products were developed; in
the UK, in particular, the business of unit-linked policies, with and without financial
guarantees, reached a large importance. In the US market, Universal Life policies
were introduced, which are characterized by many options available to the policy-
holder in regard of the amount of premiums, possible withdrawals, selection of the
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asset mix, as well as by the detailed information provided to the policyholder about
the costs charged by the insurer. During the 1990s, the innovations produced by
financial engineering have supported the design of index-linked policies, which are
single premium contracts whose return is linked to stock-market indexes.

Nowadays, insurers are increasingly addressing variable annuity policies which,
first developed in the US, offer savings opportunities during the working life of
an individual, and then private pension solutions after his/her retirement. Among
the most recent issues, we mention the hybrid products, which aim at combining
the features of participating policies (i.e., the embedded financial guarantees and a
rather low return profile)with those of unit-linked policies (that is, a higher risk-return
profile).

In the following sections, we describe the technical features of the policies men-
tioned above. We note that participating and with-profit policies require a technical
approach which basically consists in an extension of the actuarial model presented in
Chaps. 4 and 5; in particular, the mechanism underlying participating policies relies
on the adjustment model described in Sect. 7.2. Conversely, unit-linked policies (and
variable annuities) require a different technical approach.

7.2 Adjusting Benefits

In this section, we illustrate what requirement must be satisfied when the benefit
amount, first defined at the policy issue following the pricing model for fixed benefits
(see Chap.4), is adjusted during the policy duration. This description is useful to
understand how we can realize a linking of benefits to some index, as we discuss in
Sect. 7.3. The actuarial structure defined below (see, in particular, Sect. 7.2.1) extends
the basic actuarial model defined in the previous chapters.

7.2.1 The General Case

Refer to a life insurance policy whose past duration is t years. With reference to the
policy anniversary t , we denote by t− the time just before any possible adjustment at
time t , and before premium payment. At time t−, the reserve Vt− has to be available,
so to realize the actuarial balance between future benefits and future premiums:

Vt− = Ben′(t−, m) − Prem′(t−, m) (7.2.1)

(see (5.3.3)). To avoid any misunderstanding, we point out that (similarly to assump-
tions in (5.3.3)), the actuarial value Ben′(t−, m) does not include the benefit due
at the end of year (t − 1, t), while the actuarial value Prem′(t−, m) includes the
premium due at time t for year (t, t + 1) (see Sect. 7.2.2 for examples). The nota-

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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tion t− only recalls that the quantities referred to are considered prior to possible
adjustments occurring at time t . From (7.2.1) we obtain the balance condition:

Vt− + Prem′(t−, m) = Ben′(t−, m) (7.2.2)

(see also (5.3.1)), where Ben′(t−, m) represents the gross liability of the insurer at
time t− (the net liability corresponding to thedifferenceBen′(t−, m)−Prem′(t−, m)).
Equation (7.2.2) shows us that such a liability is funded by the current assets, whose
value is Vt− , joint to the assets to be purchased with future premiums, whose current
actuarial value is Prem′(t−, m).

Assume now that at time t− the benefit amount is adjusted, so that the value of
benefits increases at the rate j [B]

t . The technical basis is not changed. To maintain
the actuarial balance between assets (current and future) and (gross) liabilities, the
quantity in the left-hand side of (7.2.2) must also be increased at the rate j [B]

t . Thus,
the new balance condition is expressed as follows:

(Vt− + Prem′(t−, m))
(
1 + j [B]

t

)
= Ben′(t−, m)

(
1 + j [B]

t

)
. (7.2.3)

Equation (7.2.3) does not require that both the reserve and the future premi-
ums are increased at the rate j [B]

t (for example, this would not be possible if
Prem′(t−, m) = 0, i.e., if the policy is paid-up); what is required is that their total
value is increased at the rate j [B]

t . Different rates of adjustment of the reserve and the
future premiums, respectively, denoted by j [V]

t and j [�]
t , can be adopted, provided

that the following balance condition is satisfied

Vt−
(
1 + j [V]

t

)
+ Prem′(t−, m)

(
1 + j [�]

t

)
= Ben′(t−, m)

(
1 + j [B]

t

)
(7.2.4)

Since (7.2.2) must be fulfilled, (7.2.4) requires

Vt− j [V]
t + Prem′(t−, m) j [�]

t = Ben′(t−, m) j [B]
t (7.2.5)

(as we obtain by subtracting (7.2.2) from (7.2.4)). Equation (7.2.5) expresses that
the adjustments of the reserve and premiums must be on actuarial balance with the
benefit adjustment.

Equation (7.2.5) admits an infinite number of solutions, as it has three unknowns
(namely, the three rates of adjustment j [V]

t , j [�]
t , j [B]

t ). The amount Vt− j [V]
t , the

so-called reserve jump, or simply reserve adjustment, is funded by the insurer, so
to share profits with the policyholder. To keep control of the relevant cost charged
to the insurer, in common practice first the value for j [V]

t is selected, according to
policy conditions (see Sects. 7.2.3 and 7.3 for some examples). Then, still according
to policy conditions, a value for the rate j [�]

t is chosen. Finally, the rate j [B]
t is

calculated so that (7.2.5) is satisfied. It is then interesting to obtain an expression for
j [B]
t from (7.2.5). We find

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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j [B]
t = j [V]

t Vt− + j [�]
t Prem′(t−, m)

Ben′(t−, m)
(7.2.6)

and, replacing Ben′(t−, m) according to (7.2.2),

j [B]
t = j [V]

t Vt− + j [�]
t Prem′(t−, m)

Vt− + Prem′(t−, m)
(7.2.7)

Equation (7.2.7) shows us that the rate of adjustment of the benefit, j [B]
t , is a weighted

average of the rate of adjustment of the reserve, j [V]
t , and the rate of adjustment of

premiums, j [�]
t . The weights, respectively, Vt− and Prem′(t−, m), change in time;

in particular, since we are addressing insurance covers characterized by a significant
savings component (such as endowments or whole life assurances), we should expect
that the weight of level premiums decreases in time, while the weight of the reserve
increases. This means that when t is small (in particular, close to time 0), we should
expect that j [B]

t is closer to j [�]
t than to j [V]

t ; vice versa, when t is high, and in
particular close to the maturity m, we should expect that j [B]

t is closer to j [V]
t than

to j [�]
t . Of course, whenever Prem′(t−, m) = 0, such as for example in the case of

single premium, or paid-up policy, or if t = m, then j [B]
t = j [V]

t (see also examples
in Sect. 7.2.2).

Some remarks are useful to conclude this section. We first note that the reserve to
be set up at time t , after the benefit adjustment but before the premium payment, is

Vt = Vt−
(
1 + j [V]

t

)
(7.2.8)

From (7.2.4), we obtain the relevant expression in terms of actuarial value of future
benefits and premiums, namely

Vt = Ben′(t−, m)
(
1 + j [B]

t

)
− Prem′(t−, m)

(
1 + j [�]

t

)
(7.2.9)

If we let

Ben′(t, m) = Ben′(t−, m)
(
1 + j [B]

t

)
(7.2.10)

Prem′(t, m) = Prem′(t−, m)
(
1 + j [�]

t

)
(7.2.11)

we can also write
Vt = Ben′(t, m) − Prem′(t, m) (7.2.12)

which shows us that Vt is a prospective reserve (see (5.3.3)), as it is desirable, given
that the adjustment has not been motivated by the need of revising the logic for
the calculation of the reserve. Note that the reserve Vt is assessed considering the
updated benefit and premium amounts, while the technical basis is unchanged.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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From the notation used above, it should be clear that the adjustment only involves
benefits, net premiums and the net reserve. However, if j [�]

t > 0, what is actually
adjusted is the expense-loaded premium; this way, also the expense loading would
be adjusted, which is not strictly required by the model. However, the adjustment of
the expense loading could compensate the insurer for inflationary effects affecting
administration expenses. Anyhow, we point out that if the contract is designed so
that j [�]

t > 0, then in principle the loading set at issue for administration expenses
should be lower than what applied to contracts designed so that j [�]

t = 0.
In the presentation above, we have excluded from the reserve at time t− the benefit

due at the end of year (t − 1, t). In particular, this means that the reserve Vt− is set
up just for those policies whose insured is still alive at time t . From a technical point
of view, it would be possible to include in Vt− also the benefit due at time t , in which
case Vt− would be meant as the reserve set up at time t− for all the policies in-force
at the beginning of the year, i.e., at time t − 1. From a formal point of view, we can
still adopt the model presented above. The weights in (7.2.7) would be different, as
the reserve would be higher than what considered above. In the following, we make
reference only to the first interpretation (i.e., Vt− does not include the benefit due
at time t , unless it is the maturity benefit at time t = m), as this is the prevailing
approach in actuarial practice.

7.2.2 Addressing Specific Insurance Products

In this section, we show how the model for the adjustment of benefits described in
Sect. 7.2.1 applies to specific insurance covers.

We first refer to a standard endowment insurance, issued at time 0, with maturity
m, benefit C and annual level premium P . We assume that P has been calculated
according to (4.4.24) with s = m. The policy is designed so that at each policy
anniversary it is possible to adjust the benefits, following (7.2.7). We then need to
extend the notation for benefits and premiums.

The premium to be paid at time t , after the adjustment at that time, is denoted by
Pt . We set P0 = P , while

Pt = Pt−1

(
1 + j [�]

t

)
(7.2.13)

The death benefit payable at time t +1 is denoted by Ct+1; in particular, C1 = C ,
while

Ct+1 = Ct

(
1 + j [B]

t

)
(7.2.14)

Note that, following the more common practice, we are assuming that the adjustment
is applied at time t just to policies in-force at that time.

For the survival benefit (payable at maturity), we denote by St the amount defined
at time t . In particular, S0 = C is the amount defined at the policy issue, while

St = St−1

(
1 + j [B]

t

)
(7.2.15)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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is the amount defined at time t . Then, we simply have St = Ct+1 for t = 0, 1, . . . ,
m − 1, as it is reasonable given that we are addressing a standard endowment insur-
ance. At time m, it is possible to make a final adjustment for in-force policies, so that
Sm = Sm−1 (1 + j [B]

m ), i.e., Sm = Cm (1 + j [B]
m ).

Remark As we have commented after (7.2.14), we are assuming that the death benefit due in year
(t − 1, t) is the benefit last adjusted at the beginning of the year, i.e., at time t − 1. When assessing
the premium according to (4.4.24), we assume that the death benefit is paid at the end of the year
of death; thus, at time t it would be possible to adjust the benefit before payment, as it occurs at
time m for the maturity benefit. However, as we have already pointed out, the rate j [B]

t in (7.2.7)
refers to a policy in-force at time t−, thus excluding an adjustment of the death benefit due at time
t . This is annoying in particular at maturity, when the in-force policies receive a higher amount than
the policies reporting a death in the last year. However, in practice the death benefit is paid upon
death; in the last year, in particular, the death benefit is thus paid on average before maturity. We
further note that in practice insurers are willing to adjust the death benefit at the time of payment,
in proportion to the time spent by the policy in the portfolio in the year of death. For the sake of
brevity, we disregard this possibility and we continue to refer to benefits assessed as in (7.2.14).

For the reserve, we have (see (7.2.1) and (7.2.12))

Vt− = Ct A′
x+t,m−t� − Pt−1 ä′

x+t :m−t� (7.2.16)

Vt = Ct+1 A′
x+t,m−t� − Pt ä′

x+t :m−t� (7.2.17)

for t = 1, 2, . . . , m − 1, while for t = m we have

Vm− = Sm−1 (7.2.18)

Vm = Sm (7.2.19)

(clearly, for t = 0 we have V0 = 0, while V0− is not defined, given that at time 0−
the policy does not yet exist).

We note that, thanks to (7.2.7), the rate of the adjustment of the benefit j [B]
t is an

intermediate value between j [V]
t and j [�]

t for t = 1, 2, . . . , m − 1; at time m, since
no premium remains to be paid, we simply have j [B]

m = j [V]
m .

Example 7.2.1 Refer to a standard endowment insurance, issued at age x = 50,
with maturity m = 15 and benefit C = 1 000. Adopting the technical basis TB1 =
(0.02,LT1), we find P = 59.54. Table7.1 quotes the development in time of the
benefits if in each year the reserve is adjusted at the rate j [V]

t = 0.03, while the
premium remains unchanged. Note that in each year 0 < j [B]

t ≤ 0.03, and in
particular j [B]

m = 0.03, given that j [B]
t is the weighted average of j [V]

t and j [�]
t ; note

also that j [B]
t is increasing in time, due to the increasing weight of the reserve.

Table7.2 quotes the rate of adjustment of premiums that would be required in each
year to obtain the same benefit adjustment plotted in Table7.1, but setting j [V]

t = 0.
Since j [B]

t is the weighted average of j [V]
t and j [�]

t , it turns out 0 ≤ j [B]
t < j [�]

t , with

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 7.1 Adjusting the benefits of an endowment insurance; j [�]
t = 0

t j [V]
t (%) j [�]

t (%) j [B]
t (%) Pt Ct St Vt− Vt

0 59.54 1000.00 0.00

1 3 0 0.225 59.54 1000.00 1002.25 57.54 59.27

2 3 0 0.452 59.54 1002.25 1006.78 117.87 121.41

3 3 0 0.678 59.54 1006.78 1013.61 181.13 186.57

4 3 0 0.903 59.54 1013.61 1022.76 247.49 254.92

5 3 0 1.126 59.54 1022.76 1034.28 317.14 326.65

6 3 0 1.345 59.54 1034.28 1048.19 390.26 401.97

7 3 0 1.559 59.54 1048.19 1064.53 467.08 481.10

8 3 0 1.766 59.54 1064.53 1083.33 547.84 564.28

9 3 0 1.968 59.54 1083.33 1104.65 632.81 651.79

10 3 0 2.161 59.54 1104.65 1128.52 722.28 743.95

11 3 0 2.347 59.54 1128.52 1155.00 816.59 841.09

12 3 0 2.523 59.54 1155.00 1184.14 916.12 943.60

13 3 0 2.691 59.54 1184.14 1216.01 1021.30 1051.94

14 3 0 2.850 59.54 1216.01 1250.67 1132.63 1166.61

15 3 3.000 1250.67 1288.19 1250.67 1288.19

Table 7.2 Adjusting the benefits of an endowment insurance; j [V]
t = 0

t j [V]
t (%) j [�]

t (%) j [B]
t (%) Pt Ct St Vt− Vt

0 59.54 1000.00 0.00

1 0 0.243 0.225 59.68 1000.00 1002.25 57.54 57.54

2 0 0.531 0.452 60.00 1002.25 1006.78 116.25 116.25

3 0 0.870 0.678 60.52 1006.78 1013.61 176.32 176.32

4 0 1.272 0.903 61.29 1013.61 1022.76 238.01 238.01

5 0 1.751 1.126 62.37 1022.76 1034.28 301.60 301.60

6 0 2.327 1.345 63.82 1034.28 1048.19 367.46 367.46

7 0 3.026 1.559 65.75 1048.19 1064.53 436.05 436.05

8 0 3.890 1.766 68.31 1064.53 1083.33 507.95 507.95

9 0 4.983 1.968 71.71 1083.33 1104.65 583.92 583.92

10 0 6.417 2.161 76.31 1104.65 1128.52 664.97 664.97

11 0 8.405 2.347 82.72 1128.52 1155.00 752.53 752.53

12 0 11.430 2.523 92.18 1155.00 1184.14 848.73 848.73

13 0 16.892 2.691 107.75 1184.14 1216.01 957.07 957.07

14 0 31.535 2.850 141.73 1216.01 1250.67 1084.42 1084.42

15 0 0.000 1250.67 1250.67 1250.67 1250.67
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Table 7.3 Adjusting the benefits of an endowment insurance; j [�]
t = j [V]

t

t j [V]
t (%) j [�]

t (%) j [B]
t (%) Pt Ct St Vt− Vt

0 59.54 1000.00 0.00

1 3 3 3 61.33 1000.00 1030.00 57.54 59.27

2 3 3 3 63.16 1030.00 1060.90 119.59 123.18

3 3 3 3 65.06 1060.90 1092.73 186.44 192.03

4 3 3 3 67.01 1092.73 1125.51 258.39 266.14

5 3 3 3 69.02 1125.51 1159.27 335.77 345.85

6 3 3 3 71.09 1159.27 1194.05 418.97 431.54

7 3 3 3 73.23 1194.05 1229.87 508.37 523.62

8 3 3 3 75.42 1229.87 1266.77 604.42 622.55

9 3 3 3 77.68 1266.77 1304.77 707.61 728.84

10 3 3 3 80.02 1304.77 1343.92 818.48 843.03

11 3 3 3 82.42 1343.92 1384.23 937.65 965.78

12 3 3 3 84.89 1384.23 1425.76 1065.80 1097.77

13 3 3 3 87.43 1425.76 1468.53 1203.72 1239.83

14 3 3 3 90.06 1468.53 1512.59 1352.30 1392.87

15 3 3 1512.59 1557.97 1512.59 1557.97

j [�]
t increasing in time due to the decreasing weight of future premiums. Clearly, this
arrangement cannot be applied recursively, but could be of some interest if applied
once during the policy duration (see Sect. 7.2.3). Note that, contrarily to the example
in Table7.2, j [B]

m = 0, as the policy is paid-up at time m and the reserve is not
adjusted.

Tables7.3 and 7.4 assume, respectively, j [�]
t = j [V]

t and j [�]
t = 0.5 j [V]

t . In the
former case, we find trivially j [B]

t = j [V]
t ; in the latter, j [�]

t < j [B]
t ≤ j [V]

t , with
j [B]
t increasing in time. In both cases, the amount of the benefit is at any time higher
than in the example of Table7.1, and this is due to the higher premiums. If the cost
of the update of the reserve is charged to the insurer, as it is usually the case, and the
policyholder refers to j [B]

t to get an idea of the size of the profit distributed by the
insurer, then arrangements in Tables7.3 and 7.4 seem more appealing than arrange-
ment in Table7.1; we stress, however, that j [B]

t is also the result of the adjustment
of premiums. In order to understand the size of the profit distributed by the insurer,
reference should be made to j [V]

t only; see also Sect. 7.2.4 for further analyses in this
regard. ❑

We now refer to a whole life insurance, issued at time 0, with benefit C
and annual level premiums P payable for s years, assessed according to (4.4.26).
Equations (7.2.13) and (7.2.14), describing, respectively, the adjusted premium and

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 7.4 Adjusting the benefits of an endowment insurance; j [�]
t = 0.5 j [V]

t

t j [V]
t (%) j [�]

t (%) j [B]
t (%) Pt Ct St Vt− Vt

0 59.54 1000.00 0.00

1 3 1.5 1.613 60.43 1000.00 1016.13 57.54 59.27

2 3 1.5 1.724 61.34 1016.13 1033.65 118.73 122.29

3 3 1.5 1.835 62.26 1033.65 1052.62 183.77 189.28

4 3 1.5 1.944 63.19 1052.62 1073.08 252.89 260.47

5 3 1.5 2.052 64.14 1073.08 1095.11 326.32 336.11

6 3 1.5 2.158 65.10 1095.11 1118.74 404.34 416.47

7 3 1.5 2.262 66.08 1118.74 1144.04 487.23 501.85

8 3 1.5 2.363 67.07 1144.04 1171.07 575.32 592.58

9 3 1.5 2.462 68.08 1171.07 1199.91 668.95 689.02

10 3 1.5 2.558 69.10 1199.91 1230.60 768.54 791.60

11 3 1.5 2.652 70.13 1230.60 1263.24 874.52 900.76

12 3 1.5 2.743 71.19 1263.24 1297.90 987.40 1017.02

13 3 1.5 2.832 72.25 1297.90 1334.65 1107.75 1140.98

14 3 1.5 2.917 73.34 1334.65 1373.58 1236.23 1273.31

15 3 3.000 1373.58 1414.79 1373.58 1414.79

the adjustedbenefits, also apply to this case (the former, clearly, for t = 1, 2, . . . ,s−1,
and with P0 = P(s)). For the reserve, we have

Vt− = Ct A′
x+t − Pt−1 ä′

x+t :s−t� (7.2.20)

Vt = Ct+1 A′
x+t − Pt ä′

x+t :s−t� (7.2.21)

for t = 1, 2, . . . , s − 1, and

Vt− = Ct A′
x+t (7.2.22)

Vt = Ct+1 A′
x+t (7.2.23)

for t = s, s + 1, . . .The rate of adjustment of the benefit, j [B]
t , is an average of the

rates of adjustment of the reserve and premiums as long as there remain premiums
to be paid, i.e., for t = 1, 2, . . . , s − 1; conversely, for t = s, s + 1, . . . , it turns out
j [B]
t = j [V]

t , as the policy is paid-up.

Example 7.2.2 We consider a whole life assurance, issued for a person age x = 50,
with annual level premiums payable for s = 15 years, benefit C = 1 000. Adopting
the technical basis TB1 = (0.02,LT1), we find P = 44.90. Table7.5 quotes the
development in time of the benefits if in each year the reserve is adjusted at the rate
j [V]
t = 0.03, while the premium remains unchanged. Note that for t = 1, 2, . . . , 14
we find 0 < j [B]

t < 0.03, given that j [B]
t is the weighted average of j [V]

t and j [�]
t ;
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Table 7.5 Adjusting the benefits of a whole life insurance; j [�]
t = 0

t j [V]
t (%) j [�]

t (%) j [B]
t (%) Pt Ct Vt− Vt

0 44.90 0.00

1 3 0 0.221 44.90 1000.00 42.57 43.84

2 3 0 0.444 44.90 1002.21 87.09 89.70

3 3 0 0.667 44.90 1006.66 133.67 137.68

4 3 0 0.889 44.90 1013.37 182.40 187.87

5 3 0 1.109 44.90 1022.38 233.40 240.40

6 3 0 1.325 44.90 1033.72 286.77 295.38

7 3 0 1.538 44.90 1047.42 342.65 352.93

8 3 0 1.745 44.90 1063.53 401.17 413.21

9 3 0 1.946 44.90 1082.09 462.48 476.35

10 3 0 2.141 44.90 1103.15 526.74 542.54

11 3 0 2.328 44.90 1126.76 594.13 611.95

12 3 0 2.508 44.90 1152.99 664.85 684.79

13 3 0 2.680 44.90 1181.90 739.11 761.29

14 3 0 2.844 44.90 1213.58 817.18 841.69

15 3 3.000 1248.09 899.32 926.30

16 3 3.000 1285.53 939.32 967.50

17 3 3.000 1324.09 980.79 1010.22

18 3 3.000 1363.82 1023.78 1054.49

19 3 3.000 1404.73 1068.30 1100.35

20 3 3.000 1446.87 1114.40 1147.83

… … … … … …

note also that j [B]
t is increasing in time, due to the increasing weight of the reserve.

For t = 15, 16, . . . ,we find j [B]
t = j [V]

t , as the policy is paid-up. ❑

Refer now to an immediate life annuity in arrears, issued at age x , with initial
amount for the annual benefit b. We still denote by j [B]

t the rate of adjustment of the
benefit at time t . Since the policy is funded with a single premium, from (7.2.7) we
find j [B]

t = j [V]
t at any time t , t = 1, 2, . . . The benefit adjusted at time t is then

bt = bt−1

(
1 + j [V]

t

)
(7.2.24)

with b0 = b. According to assumptions underlying (7.2.7), the benefit paid at time
t has been last adjusted at time t − 1; thus, for the reserve we find

Vt− = bt−1 a′
x+t (7.2.25)

Vt = bt a′
x+t (7.2.26)



364 7 Finance in Life Insurance: Linking Benefits to the Investment Performance

We note that since the benefit at time t is paid to in-force policies, it would be
reasonable to adjust the benefit right before payment (so that bt would be the benefit
paid at time t), similarly to what happens for the maturity benefit of endowment
policies. The choice of one solution or the other also depends on the frequency of
payment of the benefit, which is here assumed annual, but can be monthly or other
(in this latter case, it is reasonable to apply the adjustment at time t to benefits which
will be paid after that time).

We do not give a numerical example on the adjustment of the annuity benefits, as
we would simply find j [B]

t = j [V]
t at any time t .

7.2.3 Implementing Solutions

As noted in Sect. 7.2.1, Eq. (7.2.5) admits an infinite number of solutions (unless
Prem′(t−, m) = 0, in which case we simply find j [B]

t = j [V]
t ). Table7.6 summarizes

the logic commonly followed to select particular solutions; some of these solutions
have already been considered in the numerical examples of Sect. 7.2.2, as we recall
below.

A solution in class I (considered in Table7.1 for the endowment insurance and in
Table7.5 for the whole life assurance), is usually adopted when the insurer wants to
share financial profits with the policyholder; actually, the cost of updating the reserve
is charged to the insurer. As already pointed out, first j [V]

t is chosen, according to
the financial profit gained by the insurer; then j [B]

t is calculated through (7.2.7). It
turns out: 0 < j [B]

t ≤ j [V]
t (see also remarks in this respect in Sects. 7.2.1 and 7.2.2).

From an actuarial point of view, we note that (7.2.5) reduces to

Vt− j [V]
t = Ben′(t−, m) j [B]

t (7.2.27)

which shows us that the increase of the cost of benefits, namely the right-hand side
of (7.2.27), is immediately funded with an increase of the reserve (see left-hand side
of (7.2.27)). The arrangement is also referred to as an adjustment of benefits with
constant premiums, given that premiums remain unchanged.

Solutions in class II (considered in Table7.2 for the endowment insurance) are
never applied recursively. Actually, the cost of adjusting the benefits is fully charged
to the policyholder and it turns out 0 ≤ j [B]

t < j [�]
t , with j [�]

t much larger than

Table 7.6 Solutions for the
adjustment of benefits Class of solutions j [V]

t j [�]
t j [B]

t

I >0 0 >0

II 0 >0 >0

III >0 >0 >0

IV >0 <0 0
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j [B]
t when t is close to the maximum duration of premium payment. Such a solution
finds applicationwhen an insurability guarantee (or benefit increase option) has been
underwritten within policy conditions; according to this guarantee, the policyholder
may apply for an increase of the benefit amount in face of some specific events
(typically concerning his/her household, such as the birth of a child), without being
adopted a reinforced technical basis.Without the guarantee, should a benefit increase
be required by the policyholder, a revision of the premium rate could be applied, to
prevent adverse selection. Equation (7.2.5) shows us that

Prem′(t−, m) j [�]
t = Ben′(t−, m) j [B]

t (7.2.28)

whichmeans that the increase in the cost of benefits (quantity in the right-hand side of
(7.2.28)) is amortized over the residual duration of premium payment (see left-hand
side of (7.2.28)).

In solutions belonging to class III (considered in Tables7.3 and 7.4 for the endow-
ment insurance), the increase in the cost of benefits (right-hand side of (7.2.5)) is
partially funded immediately, through the adjustment of the reserve, and partially
amortized over the residual duration of premium payment, through the adjustment
of premiums (see left-hand side of (7.2.5)). The adjustment of the reserve is charged to
the insurer, which this way shares profits with the policyholder, while the adjustment
of premiums is charged to the policyholder. First, the insurer selects j [V]

t consistently
with the realized financial profit; then, j [�]

t is set according to policy conditions.
Usually, j [�]

t is a proportion of j [V]
t , namely j [�]

t = γt j [V]
t with 0 ≤ γt ≤ 1. If

j [�]
t = j [V]

t (i.e., γt = 1) for all t , then j [B]
t = j [�]

t = j [V]
t for all t and the solution

is referred to as the adjustment scheme with three identical rates. If j [�]
t < j [V]

t (i.e.,
γt < 1), then j [�]

t < j [B]
t ≤ j [V]

t . Finally, if j [�]
t = 0 (i.e., γt = 0) for all t , we

find again the case of constant premiums (i.e., a solution in class I). When γt > 0,
usually the policyholder may apply for setting j [�]

t = 0 from a given time t ′ onward
(so that γt > 0 for t = 1, 2, . . . , t ′ − 1, while γt = 0 for t = t ′, t ′ + 1, . . . , s − 1);
this policy condition is called stabilization of premiums.

In solutions of class IV, the adjustment of the reserve results in a premium reduc-
tion; actually, (7.2.5) reduces to

Vt− j [V]
t = Prem′(t−, m)

(
− j [�]

t

)
(7.2.29)

The arrangement, which is not very common, can be of interestwhen the policyholder
is not the beneficiary, e.g., in group insurance (in which the policyholder is the
employer and the beneficiaries are the employees or their estate); in this case, the
only way to let the policyholder participate directly to the profit of the insurer is
through a premium reduction. Some triggers are required to avoid that the premium
becomes too low.

As we have mentioned several times, the cost of the reserve adjustment is charged
to the insurer, and is covered through financial profits. To avoid major risks, it
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is then important that the insurer plays a direct control on j [V]
t , i.e., that such a

rate is chosen depending on the investment yield gt gained by the insurer in year
(t −1, t). We recall that when calculating the premium and the reserve, some interest
(namely, those based on the technical interest rate i ′) is computed in advance, as all
future flows are discounted with the rate i ′. Then, the rate j [V]

t should depend on
both the yield on investments in year (t − 1, t), gt , and the technical interest rate,
i ′, i.e.,

j [V]
t = F(gt , i ′) (7.2.30)

where F is a given function (some examples are examined in detail in Sect. 7.3);
basically, the function F should reflect the difference between gt and i ′. We stress
that only an appropriate choice of (7.2.30) avoids that the cost charged to the insurer
is higher than the financial profit actually gained.

On the other hand, the policyholder may have some specific expectations in regard
of the benefit adjustment. For example, the policyholder may be interested into
recovering the depreciation of the benefit amount due to inflation. If we denote by st

the observed inflation rate in year (t − 1, t), the target of the policyholder is then

j [B]
t ≥ st (7.2.31)

Given the relation linking the rates j [B]
t , j [V]

t and j [�]
t , to reach target (7.2.31),

while keeping j [�]
t ≤ j [V]

t (as is reasonable, for commercial reasons), we need

1. j [V]
t ≥ st ;

2. possibly, j [�]
t > 0 (but j [�]

t ≤ j [V]
t ).

If the inflation rate is very low, constraints (7.2.30) and (7.2.31) can be easily
fulfilled simultaneously, as it is likely that condition 1 above is realized. Conversely,
if the inflation rate is high, it can be difficult to meet (7.2.31), because in this case
it is hard to realize condition 1. We note that when the inflation rate is low, con-
straint (7.2.31) loses importance. Indeed, in this case the policyholder’s expectation
is addressed to the return on investment, which is expected to be as high as possible,
and in any case in line with the prevailing market rates.

Table7.7 summarizes several arrangements which have been adopted in the mar-
ket, or which have been investigated by insurers; some of these arrangements are
no longer applied, or are not feasible in practice, as we comment below in more
detail. To simplify the presentation, in Table7.7 we assume that the technical interest
rate is i ′ = 0; the case of a positive technical interest rate, i.e., i ′ > 0, is discussed
in Sect. 7.3. If i ′ = 0, no interest is computed in advance, so that the difference
gt − i ′ (implicitly addressed by (7.2.30)) simply reduces to gt , i.e., the realized
investment yield. The notation j [B]

t = ϕ( j [V]
t , j [�]

t ), which we use in Table7.7,
expresses that j [B]

t is the weighted average of j [V]
t and j [�]

t , as defined by (7.2.7);
when it is clear, we write explicitly the value of such an average. Finally, the notation
j [�]
t = ψ( j [V]

t , j [B]
t ) is used to express that, once j [V]

t and j [B]
t have been chosen,

j [�]
t must be set so to fulfil the balance condition (7.2.5).
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Table 7.7 Particular solutions for the adjustment of benefits

Model j [V]
t j [�]

t j [B]
t Remarks

1a st st st

1b h(st ) h(st ) h(st ) 0 ≤ h(st ) < st

1c h(st ) φ(st ) ϕ(h(st ), φ(st )) 0 ≤ φ(st ) < h(st ) < st

2a ηt gt ηt gt ηt gt 0 < ηt < 1

2b ηt gt γt ηt gt ϕ(ηt gt , γt ηt gt ) 0 < ηt < 1, 0 ≤ γt ≤ 1

3a ηt gt ψ(ηt gt , st ) st 0 < ηt < 1

3b ηt gt ψ(ηt gt , α st ) α st 0 < ηt < 1, 0 < α < 1

4a ηt gt st ϕ(ηt gt , st ) 0 < ηt < 1

4b ηt gt min{ηt gt , st } ϕ(ηt gt ,min{ηt gt , st }) 0 < ηt < 1

4c ηt gt max{ηt gt , st } ϕ(ηt gt ,max{ηt gt , st }) 0 < ηt < 1

Models 1a–1c realize a linking to inflation; we refer to the relevant policy design
as inflation-linked policies. Model 1a, in particular, aims at recovering completely
the depreciation of the benefit amount. For what stated above, the insurer could be
willing to offer this arrangement if appropriate assets are available, i.e., inflation-
linked securities whose return with certainty is not smaller than the inflation rate
(as, in this case, the insurer would report gt = st ). Inflation-linked securities may be
available, but usually just offering a partial indexation. For this reason, arrangement
1a has not been introduced in the market. Conversely, models 1b and 1c have been
adopted. The function h(st ) is first chosen, according to the indexation of the available
assets. For example,

h(st ) =

⎧⎪⎨
⎪⎩

s′ if α st < s′

α st if s′ ≤ α st < s′′

s′′ if α st ≥ s′′
(7.2.32)

where s′, s′′ and α are given values (clearly, 0 ≤ s′ < s′′, while 0 < α ≤ 1). In
model 1b, the same value is chosen for the rate of the adjustment of the reserve
and premiums, and then of the benefit. In model 1c, premiums are increased at a
lower rate than the reserve (so to reduce the direct cost to the policyholder), but
this results in a lower increase of the benefit, given that according to (7.2.7) we find
φ(st ) < j [B]

t ≤ h(st ).
Arrangements 2a and 2b are typical of the participating policies. The aim, in

this case, is to acknowledge the policyholder a return on the reserve in line with the
investment yield realized by the insurer. The assets are selected by the insurer, and
they typically consist of bonds. The quantity ηt represents a participating proportion:
the yield ηt gt is assigned to the policyholder, while (1−ηt ) gt represents the financial
profit of the insurer. In model 2a, the same value is set for j [V]

t and j [�]
t , and then

for j [B]
t . If the investment performance of the insurer is very good, this can result in

a strong premium increase. In model 2b, then, premiums are allowed to increase at a
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lower rate than the reserve, clearlywith j [�]
t < j [B]

t ≤ j [V]
t . If γt = 0 for all t , we find

the case of the participating policies with constant premiums; as already mentioned,
in some policy designs γt > 0 up to some time (chosen by the policyholder), after
which γt = 0 (stabilization of premiums).

Arrangements 3a and 3b are fitted simultaneously to constraints (7.2.30) and
(7.2.31): the reserve is increaseddependingon the realized investment yield,while the
benefit is indexed to inflation. The rate of adjustment of the premium is assessed con-
sistently, so to realize the actuarial balance (7.2.5). The resulting premium increase
may be too high; thus, in model 3b just a partial indexation of the benefit is realized.
We note that if α st < rt , then j [�]

t < j [B]
t ≤ j [V]

t ; vice versa, if α st > rt , then
j [�]
t > j [B]

t ≥ j [V]
t .

Similarly to arrangements 3a and 3b, arrangements 4a–4c represent mixed solu-
tions in respect of inflation-linked and participating policies. In particular, model 4a
assumes that the policyholder may afford an indexation of premiums (thanks to a
presumable revaluation of his/her normal income based on the inflation rate). The
main aim of model 4b is to prevent major increases of the premiums, while not dis-
regarding the need for an indexation of the benefit amount. In solution 4c, the aim
is to get the maximum possible increase of the benefit, taking as benchmarks the
investment yield paid by the insurer and the inflation rate.

Inflation-linked policies were designed during the 1970s, in a period of high
inflation. They have not gained importance in the market, in particular because of
the unavailability of appropriate securities in manymarkets. Since the 1980s, a major
role has been played by participating policies, to which we devote Sect. 7.3.

7.2.4 The Yield to Maturity for the Policyholder

As we have stated previously, the purpose of the adjustment model examined so far
is to provide a return on the investment of the policyholder which is higher than the
technical interest rate. This is why the cost of updating the reserve is paid by the
insurer. In this section, we take the point of view of the policyholder and we discuss
how the yield received from a life insurance policy can be measured.

Before going into details, it is worth making some remarks. Products for which
it is reasonable to measure the yield received by the policyholder are those in which
there is an accumulation process, i.e., endowments, whole life assurances, or other
similar arrangements. The result of the accumulation is the benefit at maturity (for
endowments) or the surrender value (for endowments and whole life assurances). In
the following, for brevity we just refer to the benefit at maturity of an endowment
insurance.We also recall that the premium paid by the policyholder is not the amount
invested by the insurer on his/her behalf. As was discussed in Sect. 5.4.3, just a part
of the premium, namely the savings premium, is reserved for savings purposes;
however, the policyholder usually does not hold the information about the splitting
of the premium, and thus quite naturally compares the benefit received with the
expense-loaded premiums paid year by year.

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Let us refer to a standard endowment, subject to adjustments as described in
Sect. 7.2.2. As noted in Sect. 7.2.1, what is updated at the rate j [�]

t is the expense-
loaded premium, and not just the net premium (as would be required by the actuarial
balance (7.2.5)). The expense-loaded premium paid at time t is then calculated as
follows:

P [T]
t = P [T]

t−1

(
1 + j [�]

t

)
(7.2.33)

with P [T]
0 = P [T] (where P [T] is the initial expense-loaded premium, assessed at

issue according to the selected technical basis and expense-loading parameters).
We define yield to maturity on the expense-loaded premiums the annual interest

rate i [T] satisfying the following equation

Sm =
m−1∑
t=0

P [T]
t

(
1 + i [T])m−t

(7.2.34)

Clearly, i [T] is the internal rate of return of the cash-flows paid and received by the
policyholder, having assumed that the policy stays in-force until maturity.

In place of the expense-loaded premiums, it could be interesting to consider other
quantities in (7.2.34), always referring to the payments by the policyholder. In partic-
ular, we can replace the expense-loaded premiums P [T]

t with the savings premiums,
P [S]

t , or with the net premiums, Pt . In some countries, a tax discount is applied to
the taxpayer who has underwritten a life insurance contract; the size of such a dis-
count usually depends on the amount of the premium paid. It could be interesting
to calculate the yield to maturity on the expense-loaded premiums net of the tax
discount, namely on P [T]

t (1− ε) (where ε is the proportion of the tax discount). We
denote by i [S], i [�], i [TD] the yield to maturity obtained solving (7.2.34) after having
replaced the expense-loaded premiums respectively with the savings premiums, the
net premiums, or the expense-loaded premiums net of the tax discount.

Example 7.2.3 We refer to the standard endowment insurance considered in
Example7.2.1.Take the expense-loadingparameters ofExample4.5.1 (inSect. 4.5.3);
the initial expense-loaded premium then is P [T] = 66.60. Just to provide an example,
we assume that the tax discount proportion is ε = 20%. Table7.8 quotes the yield
to maturity for the arrangement examined in Table7.1 of Example7.2.1; to facilitate
the interpretation of the results, we quote the whole sequence of net premiums, sav-
ings premiums, expense-loaded premiums gross and net of the tax discount. In each
case, the premium sequence is compared to the benefit at maturity, which amounts
to 1 288.19.

We note that whatever is the type of premium addressed, the yield to maturity
is higher than the technical interest rate (i ′ = 0.02), thanks to the adjustment of
the reserve paid by the insurer. Trivially, the yield to maturity is higher the lower
is the premium amount considered. The difference between i [TD] and i [T] is due to
the tax discount. The difference between i [T] and i [�] is due to the expense-loading;
the lower is the expense-loading applied by the insurer, the lower is this difference.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 7.8 Yield to maturity for an endowment insurance; i ′ = 2%, j [V]
t = 3%, j [�]

t = 0%,
Sm = 1 288.19

t Pt P [S]
t P [T]

t 0.80 P [T]
t

0 59.54 56.42 66.60 53.28

1 59.54 56.29 66.60 53.28

2 59.54 56.17 66.60 53.28

3 59.54 56.08 66.60 53.28

4 59.54 56.00 66.60 53.28

5 59.54 55.96 66.60 53.28

6 59.54 55.96 66.60 53.28

7 59.54 56.01 66.60 53.28

8 59.54 56.12 66.60 53.28

9 59.54 56.32 66.60 53.28

10 59.54 56.63 66.60 53.28

11 59.54 57.07 66.60 53.28

12 59.54 57.67 66.60 53.28

13 59.54 58.48 66.60 53.28

14 59.54 59.54 66.60 53.28

Yield to maturity i [�] = 4.454% i [S] = 5.060% i [T] = 3.115% i [TD] = 5.763%

Table 7.9 Yield to maturity for an endowment insurance; i ′ = 2%, j [V]
t = 3%, j [�]

t = 3%,
Sm = 1 557.97

t Pt P [S]
t P [T]

t 0.80 P [T]
t

0 59.54 56.42 66.60 53.28

1 61.33 57.98 68.60 54.88

2 63.16 59.60 70.66 56.53

3 65.06 61.29 72.78 58.22

4 67.01 63.05 74.96 59.97

5 69.02 64.91 77.21 61.77

6 71.09 66.86 79.53 63.62

7 73.23 68.95 81.91 65.53

8 75.42 71.18 84.37 67.50

9 77.68 73.60 86.90 69.52

10 80.02 76.23 89.51 71.61

11 82.42 79.12 92.19 73.75

12 84.89 82.34 94.96 75.97

13 87.43 85.96 97.81 78.25

14 90.06 90.06 100.74 80.59

Yield to maturity i [�] = 4.443% i [S] = 5.060% i [T] = 3.012% i [TD] = 5.835%
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Table 7.10 Yield to maturity for an endowment insurance; i ′ = 2%, j [V]
t = 3%, j [�]

t = 1.5%,
Sm = 1 414.79

t Pt P [S]
t P [T]

t 0.80 P [T]
t

0 59.54 56.42 66.60 53.28

1 60.43 57.13 67.60 54.08

2 61.34 57.87 68.62 54.89

3 62.26 58.64 69.64 55.72

4 63.19 59.45 70.69 56.55

5 64.14 60.30 71.75 57.40

6 65.10 61.21 72.83 58.26

7 66.08 62.19 73.92 59.13

8 67.07 63.26 75.03 60.02

9 68.08 64.45 76.15 60.92

10 69.10 65.78 77.29 61.84

11 70.13 67.28 78.45 62.76

12 71.19 69.01 79.63 63.70

13 72.25 71.00 80.83 64.66

14 73.34 73.34 82.04 65.63

Yield to maturity i [�] = 4.449% i [S] = 5.060% i [T] = 3.065% i [TD] = 5.798%

Finally, the difference between i [�] and i [S] is due to the cost of the sum at risk, i.e.,
to the risk premiums. We recall that the risk premium is used for mutuality purposes,
and hence does not contribute to the accumulation of the benefit at maturity.

Tables7.9 and 7.10 refer, respectively, to the arrangements in Tables7.3 and 7.4. In
the former case, the benefit at maturity amounts to 1 557.97, in the latter to 1 414.79.
Within each table, comparisons similar to those commented for Table7.8 can be
performed. It is more interesting to compare the yields to maturity in the different
arrangements. We note that the size of the yield to maturity is more or less the same
when the same type of premium is considered under the different arrangements;
typically, the higher is the premium paid by the policyholder, the slightly lower is
the yield to maturity. When referring to savings premiums, the yield to maturity is
not affected by the specific arrangement; in all the three tables, actually we find
i [S] = 5.060%. This can be justified noting that in all the three arrangements, the
yield paid year by year by the insurer is 2% through the technical interest rate and
3% through the adjustment of the reserve. In Sect. 7.3 we will explain how 5.060%
comes out (here we just note that 0.05060 = 1.02 × 1.03 − 1); see, in particular,
Example7.3.2. ❑

From a financial point of view, the most appropriate measure for the yield to the
policyholder is i [S]. As we have noted in Example7.2.3, only the savings premium
contributes to the accumulation of the benefit at maturity; the risk premium and the
expense loading are used to cover annual costs (namely, mutuality and expenses).
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As it has emerged in Example7.2.3, i [S] corresponds to the return totally assigned
to the contract by the insurer. However, unless the insurer provides the policyholder
with detailed information about the costs of the contract, the policyholder can just
refer to the expense-loaded premium, possibly net of the tax discount.

7.3 Participating Policies

Participating policies are designed along the model examined in Sect. 7.2. As already
noted in Sect. 7.2.3, the feature of the participating design stands in the way the rate
of update of the reserve, j [V]

t , is selected. Thus, in this section we discuss about
the choice of j [V]

t . For participating policies, the rate j [V]
t is usually denoted as rt ,

the so-called revaluation rate; in the following, we adopt this notation. We recall
that premiums may either be updated, typically in proportion to rt (see Table7.7),
or remain unchanged. Nowadays, the latter solution (namely, constant premiums) is
the most common choice.

Participating policies usually provide some (implicit) guarantee for the return
on the investment of the policyholder; consistently, the investment realized by the
insurer has to be not too risky. Assets typically consist of bonds. The investment fund
is internal, i.e., directly managed by the insurer; hence, the yield gained in a year
not only reflects market conditions, but also the investment ability of the insurer. In
some countries, the realized return must be certified by an independent auditor; in
this case, the assets backing the reserve must be objectively identifiable in respect
of the overall assets of the insurer. A specific reporting is performed, and the fund is
referred to as a special (managed) fund or segregated fund.

7.3.1 Participating Policies with a Guaranteed Annual Return

We let gt denote the investment yield gained in year (t − 1, t) by the insurer on
the assets backing the reserve of the participating business. When a certification is
required, the rate gt is the latest certified yield.

In the traditional participating arrangements, policy conditions define the total
return on the investment of the policyholder’s reserve in year (t − 1, t) as follows

max{i ′, ηt gt } (7.3.1)

where ηt is a given proportion, the so-called participating proportion, and i ′ (as
usual) the technical interest rate. Note that the technical interest rate is guaranteed in
each year, given that the total return on the investment of the policyholder’s reserve
is expressed by (7.3.1) for any t . The meaning of the participating proportion was
already illustrated in Sect. 7.2.3. The quantity ηt can be chosen year by year by
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the insurer, not below a minimum value η′ (stated in policy conditions, and often
mandated by the supervisor) and below 1 (hence: 0 ≤ η′ ≤ ηt < 1; for example,
η′ = 0.75). In some arrangements, a waiting period is given (of 1 or 2 years), during
which ηt = 0; this is justified by the fact that in the early years of the contract, the
credit of the insurer in respect of initial expenses is still too high (see Sect. 5.6). In
general, an appropriate choice of ηt could allow to realize some smoothing of the
total yield paid on the investment of the policyholder (for example, choosing a lower
value for ηt than usual when the interest rate gt is high, and vice versa a higher
value ηt when gt is low). However, in some markets it is usual to set ηt more or less
constant in time. The fact that the supervisor requires ηt < 1 expresses that some
profit must be retained by the insurer to face future adverse fluctuations.

Remark Of course, it could be possible, for the insurer, to retain profit also setting ηt = 1. Indeed,
the application of appropriate asset management fees could replace the profit otherwise gained
setting ηt < 1, and this is an approach that some insurers prefer. However, this is not a natural
choice within the participating business, as participating policies embed financial guarantees, as we
discuss in detail below. A financial guarantee implies some risk for the insurer, for which it must
be rewarded, either charging a fee expressing the cost of the guarantee (but this is not usual for
participating policies, as we comment below) or retaining profit. Vice versa, if no financial risk is
charged to the insurer, than the insurer just needs to be paid for managing the policyholder’s assets,
and this is appropriately obtained through asset management fees.

Turning to the calculation of rt , we recall that the total annual return on the
investment of the policyholder must fulfil definition (7.3.1). First, we need to state
what is the amount invested for the policyholder.Refer to a policy forwhichpremiums
are being paid. At the beginning of the year, i.e., at time t − 1, after premium
payment, the investment of the policyholder consists of the reserve Vt−1 and the
savings premium P [S]

t−1 (we recall that the risk premium and the expense loading
are used to fund annual costs, and hence do not contribute to the investment of the
policyholder). At the end of the year, i.e., at time t , the value of the investment
belonging to an in-force policy is Vt . According to (7.3.1), it must turn out

Vt =
(

Vt−1 + P [S]
t−1

)
(1 + max{i ′, ηt gt }) (7.3.2)

As described in Sect. 7.2.1, the rate rt is used to update the reserve Vt− , so to fulfil
(7.3.2). According to (5.4.13), the reserve Vt− can be expressed as follows

Vt− =
(

Vt−1 + P [S]
t−1

)
(1 + i ′) (7.3.3)

We note that (7.3.3) also holds when a premium is not being paid, as the savings
premium is defined also in this case (see Sect. 5.4.3).

The link between Vt and Vt− is described by (7.2.8), with j [V]
t = rt . Replacing

(7.3.3) into (7.2.8), it turns out

Vt =
(

Vt−1 + P [S]
t−1

)
(1 + i ′) (1 + rt ) (7.3.4)

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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Equating (7.3.2) to (7.3.4), we finally find

(1 + i ′) (1 + rt ) = 1 + max{i ′, ηt gt } (7.3.5)

and hence

rt = max

{
ηt gt − i ′

1 + i ′
, 0

}
(7.3.6)

The impossibility for rt to fall below0 is a consequence of the fact that the technical
interest rate i ′ is guaranteed annually; actually, the ratio ηt gt −i ′

1+i ′ can become negative
only if ηt gt < i ′, namely if the realized investment yield is lower than the technical
interest rate. Conversely, the investment yield above i ′, i.e., the difference ηt gt − i ′,
must be divided by 1+ i ′ because interest based on the technical rate i ′ have already
been credited to the reserve, as it is made explicit by (7.3.3).

Expression (7.3.6) corresponds to the pay-off of a financial option; indeed, the
technical interest rate i ′ is the minimum annual return guaranteed on the investment
of the policyholder.

Remark The financial optionwhose pay-off is described by (7.3.6) is considered to be an embedded
financial option. While the insurer’s liability is affected by such an option, the relevant cost is not
explicitly charged to the policyholder. The reason can be found in the origins of participating
policies. As noted in Sect. 7.1, participating policies were first designed during the 1980s. At that
time, the spread between market rates and the technical rate was very high. The model described in
Sect. 7.2 suggested how to pay to policyholders a return on investment in line with the yield realized
by the insurer, while keeping the technical interest rate at the usual low levels. The adjustment
rate in (7.3.6) represented a nice commercial solution; the risk originated by it was assumed to be
negligible, given that the relevant financial option was deeply out-of-the-money. Indeed, a charge
for the guarantee was not considered to be necessary. Conversely, nowadays the spread ηt gt − i ′
has reduced a lot, and the cost of the guarantee is no longer negligible. New definitions of rt have
been introduced, as we describe in Sect. 7.3.2. We will come back to the valuation of the guarantee
in Sect. 7.5.

Since (7.3.1) guarantees in each year a return not lower than i ′, the yield realized
above i ′ in a year, namely ηt gt − i ′, is locked-in, and this is shown by (7.3.6) (the
option embedded in a traditional participating policy is then like a cliquet option).
Therefore, when assessing the rate gt , the insurermust be sure that the return obtained
in a year cannot be lost in subsequent years; in other words, the rate gt must be
permanently gained, i.e., itmust have been cashed.A return based on the current value
of assets is not appropriate, as the market value of assets is subject to depreciation (if
market conditions change unfavorably). In principle, assets backing the reserve of a
participating business are reported at historical cost (but clearly, several accounting
rules apply, which we do not discuss).

Example 7.3.1 In order to show the effect of locking-in the return realized above an
annual guaranteed level, we compare the following two arrangements: a participating
policy without any guarantee for the annual return and a participating policy with
guarantee (7.3.1). We stress that the former arrangement is purely notional, as no
rational policyholder would accept it, and is quoted here only for comparisonwith the
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latter (which describes a real arrangement). If there is no guarantee, the annual return
is simply ηt gt . Assume that in both cases, the technical interest rate is i ′ = 0.02. We
stress that only under (7.3.1), the rate i ′ is the guaranteed annual return; otherwise,
it is simply a computation rate (i.e., a rate used to calculate premiums and reserves;
see Sect. 7.3.2 for further remarks and examples in this regard). Table7.11 quotes a
possible path for the annual return (with no guarantee) ηt gt and the corresponding
annual return with guarantee (7.3.1), i.e., max{ηt gt , i ′}. The rates i [ave]t and i [ave,guar]t
are defined so that the following equations are, respectively, fulfilled:

(
1 + i [ave]t

)t =
t∏

s=1

(1 + ηs gs) (7.3.7)

(
1 + i [ave,guar]t

)t =
t∏

s=1

(1 + max{ηs gs, i ′}) (7.3.8)

Thus, the quantities i [ave,guar]t and i [ave]t are the average interest rates obtained in the
time-interval (0, t), either providing or not an annual guarantee.

The comparison between ηt gt andmax{ηt gt , i ′} is straightforward.What is more
interesting is to compare i [ave]t to i [ave,guar]t . First note that i [ave]t is at any time higher
than 2%; so, if the target of the policyholder is to get an annual return which is
on average at least 2%, for the particular path of ηt gt quoted in Table7.11, there
is no need of a guarantee. However, (7.3.1) requires that in each year the return is

Table 7.11 Annual return and annual average return, with and without guarantee (7.3.1)

t ηt gt (%) i [ave]t (%) max{ηt gt , i ′} (%) i [ave,guar]t (%)

1 5.000 5.000 5.000 5.000

2 4.500 4.750 4.500 4.750

3 4.000 4.499 4.000 4.499

4 3.000 4.122 3.000 4.122

5 2.000 3.694 2.000 3.694

6 1.500 3.325 2.000 3.410

7 2.500 3.207 2.500 3.280

8 2.000 3.055 2.000 3.119

9 3.000 3.049 3.000 3.106

10 1.000 2.842 2.000 2.994

11 2.000 2.766 2.000 2.904

12 2.500 2.743 2.500 2.870

13 1.500 2.647 2.000 2.803

14 5.000 2.814 5.000 2.958

15 5.000 2.958 5.000 3.093
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at least 2%, so that after having observed ηt gt < 2%, we find i [ave,guar]t > i [ave].
Note that starting from the year in which ηt gt first falls below 2%, it turns out
i [ave,guar]s > i [ave]s in all the future years s, even if ηs gs ≥ 2%; this is the effect of
locking-in the extra-yield realized before it first occurs ηt gt < 2%. ❑

In Sect. 7.2.4, we have stated that i [S] is an appropriate measure of the yield to
maturity to the policyholder. In Example7.2.3, we have noted in particular that, given
the path of the return paid year by year by the insurer, the rate i [S] remains the same
whatever is the choice concerning the update of the premium. We can now comment
more in detail. First, we note that i [S] = i [ave,guar]m (or i [S] = i [ave]m , if no guarantee
applies; we have already noticed that this is not a realistic situation). Thanks to
(7.3.2), solving

Sm =
m−1∑
t=0

P [S]
t (1 + i [S])m−t (7.3.9)

or solving (7.3.8) for t = m is the same. Indeed, (7.3.1) expresses the annual return
on the investment of the policyholder, and such an investment is formed through the
savings premiums. This justifies the findings of Example7.2.3.

Example 7.3.2 InExample7.2.3,we assumed i ′ = 0.02 and j [V]
t = 0.03 in eachyear

(i.e., rt = 0.03 with the notation adopted in this section). We are now able to say that
the annual return paid in each year by the insurer is: 1.02×1.03−1 = 0.05060. Such
a return is obtained on the investment of the policyholder, i.e., on the accumulation
of the savings premiums. From this, it turns out i [S] = 0.05060, whatever is the
arrangement for the update of the annual premiums. ❑

An alternate definition for the revaluation rate rt is the following:

rt = max

{
ηt gt − i ′

1 + i ′
, rmin

}
(7.3.10)

where rmin is aminimum guaranteed annual revaluation rate (in practice, it is usually
referred to as the guaranteed rate; we prefer to avoid this terminology, as this can
create some misunderstanding in respect of i ′, which is also guaranteed). If we take
rmin = 0, we find (7.3.6) as a particular case. Commonly, (7.3.10) is adopted with a
technical interest rate i ′ lower than what is otherwise usual; possibly, i ′ = 0. Then,
rmin is set so that the usual guaranteed rate is provided; for example, if the insurer is
willing to guarantee an annual return equal to 2%, it can either select i ′ = 0.02 and
rmin = 0, or i ′ = 0 and rmin = 0.02, or i ′ = 0.01 and rmin = 0.01, and so on. The
effect of reducing i ′ in respect of the usual levels is to avoid computing in advance
(some of) the interest which is guaranteed. For a policy reaching maturity, either
computing in advance or not the guaranteed interest is to some extent the same (see
Example7.3.3); conversely, for a policy getting closed before maturity, the benefit
may turn out to be lower if interest has not been computed in advance. We note that
the type of financial option embedded in (7.3.10) is the same as in (7.3.6), clearly
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Table 7.12 Participating endowment insurance; i ′ = 0, rmin = 0.02, j [�]
t = 0

t rt (%) j [�]
t (%) j [B]

t (%) Pt Ct St Vt− Vt

0 59.54 858.75 0.00

1 5.060 0 0.335 59.54 858.75 861.62 56.83 59.70

2 5.060 0 0.684 59.54 861.62 867.52 116.45 122.34

3 5.060 0 1.044 59.54 867.52 876.58 179.02 188.08

4 5.060 0 1.413 59.54 876.58 888.96 244.70 257.08

5 5.060 0 1.785 59.54 888.96 904.83 313.68 329.55

6 5.060 0 2.159 59.54 904.83 924.37 386.15 405.69

7 5.060 0 2.531 59.54 924.37 947.76 462.32 485.71

8 5.060 0 2.896 59.54 947.76 975.21 542.43 569.87

9 5.060 0 3.252 59.54 975.21 1006.92 626.72 658.43

10 5.060 0 3.595 59.54 1006.92 1043.12 715.47 751.67

11 5.060 0 3.924 59.54 1043.12 1084.06 808.98 849.92

12 5.060 0 4.236 59.54 1084.06 1129.98 907.60 953.52

13 5.060 0 4.530 59.54 1129.98 1181.17 1011.68 1062.87

14 5.060 0 4.805 59.54 1181.17 1237.93 1121.63 1178.39

15 5.060 0 5.060 1237.93 1300.57 1237.93 1300.57

with different parameters; thus, similarly to (7.3.6), (7.3.10) implies the locking-in
of extra-yields on investment.

Example 7.3.3 Refer to a participating standard endowment insurance, issued at age
x = 50, with maturity m = 15 and net premium P = 59.54. We adopt the technical
basis TB1 = (0,LT1); thus, i ′ = 0. We set the minimum guaranteed revaluation
rate rmin = 0.02. Solving (4.4.24), we find C = 858.75. Table7.12 quotes the
development in time of the benefits, if in each year the reserve is adjusted at the rate
rt = 0.05060, while the premium remains unchanged.

The example in Table7.12 can be compared with the example in Table7.1; the two
examples differ for the technical interest rate, which is i ′ = 0.02 in Table7.1 (see data
in Example7.2.1). Given the same premium amount, when i ′ = 0 (Table7.12) the
initial amount of the benefit is lower. Further, rt is higher and, given that the observed
yield is always higher than the minimum guaranteed level, we simply find rt = ηt gt .
As a result, j [B]

t is higher in Table7.12 than in Table7.1. The benefit at maturity is
almost the same in the two cases, as well as the reserve at any time; however, the
death benefit in Table7.12 is quite always lower than in Table7.1. Thus, in case of
early death, if some interest has not been computed in advance, it is likely that the
benefit is lower. Table7.13 summarizes the comparison between the arrangements
in Tables7.1 and 7.12.

In Table7.14 a further comparison is performed between arrangements considered
in Tables7.1 and 7.12, but with an alternative path for the observed investment yield
(we consider the path of Example7.3.1). Comments are straightforward. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 7.13 Participating endowment insurance with different technical interest rates

Arrangement in Table7.1 Arrangement in Table7.12

Initial premium, P 59.54 59.54

Technical interest rate, i ′ 0.02 0

Minimum guaranteed
revaluation rate, rmin

0 0.02

Initial benefit, C1 = S0 1 000 858.75

Benefit at maturity, Sm 1 288.19 1 300.57

Revaluation rate rt = max
{

ηt gt −0.02
1.02 , 0

}
rt = max{ηt gt , 0.02}

Annual total return (1 + i ′) (1 + rt ) − 1
= 1.02 × 1.03 − 1 = 5.06%

rt = 5.06%

Yield to maturity, i [S] 4.454% 4.568%

Table 7.14 Participating endowment insurance with different technical interest rates

t ηt gt
(%)

rt = max
{

ηt gt −0.02
1.02 , 0

}
rt = max{ηt gt , 0.02}

rt (%) j [B]
t (%) Ct St rt (%) j [B]

t (%) Ct St

0 1000.00 858.75

1 5.000 2.941 0.221 1000.00 1002.21 5.000 0.331 858.75 861.59

2 4.500 2.451 0.369 1002.21 1005.91 4.500 0.608 861.59 866.83

3 4.000 1.961 0.442 1005.91 1010.35 4.000 0.823 866.83 873.96

4 3.000 0.980 0.293 1010.35 1013.31 3.000 0.831 873.96 881.22

5 2.000 0.000 0.000 1013.31 1013.31 2.000 0.694 881.22 887.34

6 1.500 0.000 0.000 1013.31 1013.31 2.000 0.831 887.34 894.72

7 2.500 0.490 0.247 1013.31 1015.81 2.500 1.209 894.72 905.53

8 2.000 0.000 0.000 1015.81 1015.81 2.000 1.105 905.53 915.54

9 3.000 0.980 0.621 1015.81 1022.11 3.000 1.858 915.54 932.55

10 1.000 0.000 0.000 1022.11 1022.11 2.000 1.375 932.55 945.37

11 2.000 0.000 0.000 1022.11 1022.11 2.000 1.505 945.37 959.60

12 2.500 0.490 0.402 1022.11 1026.23 2.500 2.040 959.60 979.17

13 1.500 0.000 0.000 1026.23 1026.23 2.000 1.758 979.17 996.39

14 5.000 2.941 2.767 1026.23 1054.62 5.000 4.701 996.39 1043.23

15 5.000 2.941 2.941 1054.62 1085.64 5.000 5.000 1043.23 1095.40

7.3.2 Participating Policies: Comparing Guarantee Structures

As we have noted in Sect. 7.3.1, the insurer does not apply a fee for the financial
options embedded in (7.3.6) and (7.3.10); indeed, the pricing of participating life
insurance covers is the same as for covers with fixed benefits. The technical justifi-
cation stands in the fact that the model described in Sect. 7.2, for the adjustment of
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benefits, guarantees that the contract is always on actuarial balance; the economic
justification, as we have mentioned in Sect. 7.3.1, stands in the fact that for many
years the value of the financial options embedded in (7.3.6) and (7.3.10) has been
negligible.

If we wonder about what benefits are affected by the guarantee, we first note that,
because of (7.3.6) or (7.3.10), it is guaranteed that j [B]

t ≥ 0; thus, as it is natural,
the benefit at maturity and the death benefit are affected by the guarantee. Also the
reserve is affected by the guarantee, given that under (7.3.6) we have rt ≥ 0, while
under (7.3.10) we have rt ≥ rmin. We recall that the surrender value, if any, is a
part of the reserve (see Sect. 5.7); hence, also the surrender value is affected by the
guarantee.

Considering that, because of the design, the financial guarantees in participating
policies are embedded, which in particular means that no fee is applied, in recent
times insurers have introduced new rules for the calculation of the revaluation rate rt ,
aiming at reducing the cost of the guarantee. In particular, what has been weakened
is the locking-in of realized extra-yields. In the following, we examine these modern
designs of participating policies, assuming that j [�]

t = 0, as is common nowadays.
With reference to a participating policy, let us take the perspective of the accu-

mulation of savings premium; in other words, we only look at the accumulation of
the investment of the policyholder. For simplicity, we understand reference to an
endowment policy (but what we illustrate can also be referred to other products,
such as whole life assurances or life annuities).

Just for comparison, we first address a traditional policy with fixed benefits. Such
a product guarantees the investment yield i ′.

Remark Westress that in this case i ′ is the return obtained by the policyholder onhis/her investment,
and not a minimum guaranteed rate as in participating policies. The guarantee stands in the fact that
the yield paid by the insurer cannot be lower than i ′, but it will not be higher than i ′.

The development in time of the investment of the policyholder can be described
as follows (see Sect. 5.4.3)

Vt =
(

Vt−1 + P [S]
t−1

)
(1 + i ′) (7.3.11)

and then

Vt =
t−1∑
s=0

P [S]
s (1 + i ′)t−s (7.3.12)

We denote as
f [0](s, t) = (1 + i ′)t−s (7.3.13)

the accumulation factor applied to savings premiums.
We now refer to a participating policy with revaluation rate rt as in (7.3.6). For

making easier the comparison among different cases, in the following we denote
such a revaluation rate as r [1]

t . The development in time of the investment of the

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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policyholder can be described as follows (see (7.3.2) and (7.3.4))

Vt =
(

Vt−1 + P [S]
t

)
(1 + i ′)

(
1 + max

{
ηt gt − i ′

1 + i ′
, 0

})
=

(
Vt−1 + P [S]

t

)
(1 + max{ηt gt , i ′})

(7.3.14)

Thus we can define the accumulation factor

f [1](t − 1, t) = (1 + max{ηt gt , i ′}) (7.3.15)

for year (t − 1, t) and, more in general for the time-interval (s, t)

f [1](s, t) =
t∏

h=s+1

(1 + max{ηh gh, i ′}) (7.3.16)

It turns out
f [1](s, t) ≥ f (s, t) (7.3.17)

due to the locking-in effect.
If the revaluation rate rt is defined as in (7.3.10), after examining the development

in time of the investment of the policyholder, we find that the accumulation factor is

f [2](t − 1, t) = (1 + i ′)
(
1 + max

{
ηt gt − i ′

1 + i ′
, rmin

})
= max{(1 + i ′) (1 + rmin), (1 + ηt gt )}

(7.3.18)

and more in general

f [2](s, t) =
t∏

h=s+1

max{(1 + i ′) (1 + rmin), (1 + ηh gh)} (7.3.19)

Clearly, it turns out
f [2](s, t) ≥ f [0](s, t) (7.3.20)

due to the locking-in effect. Further, parameters i ′ and rmin in (7.3.19) are commonly
chosen so that

f [2](s, t) = f [1](s, t) (7.3.21)

for any time-interval (s, t). In the following, for comparison we refer to the revalu-
ation rate defined by (7.3.10) as to the rate r [2]

t .
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Consider now the revaluation rate r [3]
t defined as follows:

r [3]
t = ηt gt − i ′

1 + i ′
(7.3.22)

Depending on the difference, ηt gt − i ′, the rate r [3]
t can take negative values; thus,

no guarantee is embedded. The accumulation factor based on r [3]
t can be defined as

follows:

f [3](s, t) =
t∏

h=s+1

(1 + ηh gh) (7.3.23)

as one can easily check writing the equations expressing the development in time of
the investment of the policyholder. Under (7.3.23), we have

f [3](s, t) � f [0](s, t) (7.3.24)

given that no guarantee is applied. Further

f [3](s, t) ≤ f [1](s, t) (7.3.25)

f [3](s, t) ≤ f [2](s, t) (7.3.26)

We note that the accumulation factor f [3](s, t) was considered in Example7.3.1,
for comparison with f [1](s, t) (even if this notation was not yet introduced); we
mentioned there that solution (7.3.23) is unworkable, as no rational policyholder
would accept to receive no guarantee under a participating policy. However, the only
way to avoid to lock-in extra-yields on investment is to let the revaluation rate rt

become negative, if necessary. Indeed, if rt < 0, the reserve is reduced, so to offset
(at least partially) the positive adjustments applied in previous years.

If the revaluation rate rt is allowed to take negative values, as in (7.3.22), we may
experience j [B]

t < 0 (we recall that we are assuming j [�]
t = 0). Hence, the death

benefit and the benefit at maturity are no longer guaranteed; as already noted, this is
not acceptable. If (7.3.22) is adopted, we can introduce an explicit guarantee on the
death benefit, for example defining the death benefit at time t as follows:

Ct = C1 × max

{
t−1∏
s=1

(1 + j [B]
s ), (1 + j [B,guar])t−1

}
(7.3.27)

where C1 is the initial death benefit (i.e., the amount referred to for the calculation of
premiums);

∏t−1
s=1(1+ j [B]

s ) is the revaluation obtained in the time-interval (1, t −1)
based on the observed investment yields; j [B,guar] is a minimum guaranteed reval-
uation rate of the death benefit. Note that, to avoid to lock-in past revaluations, the
rate j [B,guar] is guaranteed just to the time of payment of the death benefit, i.e., it
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expresses the annual average minimum revaluation rate of the death benefit which is
guaranteed.

A similar guarantee can be introduced for the benefit at maturity. Given that the
benefit at maturity is the result of the accumulation of savings premiums, it is more
natural to express the guarantee in terms of accumulation factor. For example, the
following definition could be adopted

f [4](s, m) = max

{
m∏

h=s+1

(1 + ηh gh), (1 + i ′)m−s

}
(7.3.28)

where the return guaranteed to maturity is i ′; the factor f [4](s, m) is meant here to
be applied just for the time-intervals (s, m), s = 0, 1, . . . , m − 1. In case we want
to assess the value of the investment at time t , t < m, for example because we need
to define the surrender value, reference should be made to the accumulation factor
f [3](s, t). Note that

f [4](s, m) ≥ (1 + i ′)m−s (7.3.29)

so that, with reference to the benefit at maturity, each savings premium will be
accumulated at an annual rate that on average is not lower than i ′; indeed, i ′ in (7.3.28)
represents the annual average minimum return guaranteed on the investment of the
policyholder. Also in this case, past extra-yields are not locked-in. Other solutions are
clearly possible; in particular, insurers have designed solutions which do not avoid
to lock-in extra-yields, but the locking-in does not occur in each year. In particular,
the rate r [3]

t has been adopted, but requiring that every k years (since time 0) the
average return on the investment of the policyholder must be at least i ′. In this case,
the accumulation factor could be defined as follows:

f [5](s, t) = f [5](s, z) ×
{∏t

h=z+1(1 + ηh gh) if z < t < z + k

max
{∏k

h=z+1(1 + ηh gh), (1 + i ′)k
}

if t = z + k

(7.3.30)

with z = 0, k, 2k, . . . and s ≤ z. Solution (7.3.30) implies a partial lock-in of extra-
yields on investment. The period k is commonly set to 3 or 5 years; if k = m, we find
(7.3.28) as a particular case, i.e., the yield would be guaranteed to maturity. We note
that under (7.3.30) at somepolicy anniversaries, namely at time k, 2k, . . . , the reserve
cannot reduce (indeed, at time k, 2k, . . . the revaluation rate cannot be negative);
as a consequence, the surrender value at such policy anniversaries receives some
guarantee.

Example 7.3.4 Tables7.15, 7.16, and 7.17 list the accumulation factors experi-
enced in face of three different scenarios, expressed in terms of paths of gt (and
hence of ηt gt ). Definitions introduced above for the accumulation factor have
been considered. For the sake of brevity, only the time-interval (0, t) has been
addressed. In Figs. 7.1, 7.2, and 7.3 the time profiles of the accumulation factors
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Table 7.15 Participating endowment insurance. Accumulation factors in Scenario 1 (high invest-
ment yields)

t gt (%) f [0](0, t) f [1](0, t) f [2](0, t) f [3](0, t) f [4](0, t) f [5](0, t)

i ′ = 0.02 i ′ = 0.02 i ′ = 0
rmin = 0.02

i ′ = 0.02 i ′ = 0.02
k = 3

1 5.00 1.0200 1.0475 1.0475 1.0475 1.0475 1.0475

2 4.50 1.0404 1.0923 1.0923 1.0923 1.0923 1.0923

3 4.00 1.0612 1.1338 1.1338 1.1338 1.1338 1.1338

4 3.00 1.0824 1.1661 1.1661 1.1661 1.1661 1.1661

5 2.80 1.1041 1.1971 1.1971 1.1971 1.1971 1.1971

6 2.90 1.1262 1.2301 1.2301 1.2301 1.2301 1.2301

7 3.50 1.1487 1.2710 1.2710 1.2710 1.2710 1.2710

8 2.70 1.1717 1.3036 1.3036 1.3036 1.3036 1.3036

9 3.10 1.1951 1.3420 1.3420 1.3420 1.3420 1.3420

10 3.30 1.2190 1.3841 1.3841 1.3841 1.3841 1.3841

11 2.50 1.2434 1.4169 1.4169 1.4169 1.4169 1.4169

12 2.50 1.2682 1.4506 1.4506 1.4506 1.4506 1.4506

13 2.90 1.2936 1.4906 1.4906 1.4906 1.4906 1.4906

14 3.40 1.3195 1.5387 1.5387 1.5387 1.5387 1.5387

15 4.50 1.3459 1.6045 1.6045 1.6045 1.6045 1.6045

Table 7.16 Participating endowment insurance. Accumulation factors in Scenario 2 (medium
investment yields)

t gt (%) f [0](0, t) f [1](0, t) f [2](0, t) f [3](0, t) f [4](0, t) f [5](0, t)

i ′ = 0.02 i ′ = 0.02 i ′ = 0
rmin = 0.02

i ′ = 0.02 i ′ = 0.02
k = 3

1 2.50 1.0200 1.0238 1.0238 1.0238 1.0238 1.0238

2 2.50 1.0404 1.0481 1.0481 1.0481 1.0481 1.0481

3 3.00 1.0612 1.0779 1.0779 1.0779 1.0779 1.0779

4 2.70 1.0824 1.1056 1.1056 1.1056 1.1056 1.1056

5 1.80 1.1041 1.1277 1.1277 1.1245 1.1245 1.1245

6 1.30 1.1262 1.1502 1.1502 1.1384 1.1384 1.1439

7 1.20 1.1487 1.1733 1.1733 1.1514 1.1514 1.1570

8 1.00 1.1717 1.1967 1.1967 1.1623 1.1623 1.1679

9 1.10 1.1951 1.2207 1.2207 1.1744 1.1744 1.2139

10 1.50 1.2190 1.2451 1.2451 1.1912 1.1912 1.2312

11 2.30 1.2434 1.2723 1.2723 1.2172 1.2172 1.2581

12 3.40 1.2682 1.3134 1.3134 1.2565 1.2565 1.2988

13 2.40 1.2936 1.3433 1.3433 1.2852 1.2852 1.3284

14 3.50 1.3195 1.3880 1.3880 1.3279 1.3279 1.3725

15 4.50 1.3459 1.4473 1.4473 1.3847 1.3847 1.4312
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Table 7.17 Participating endowment insurance. Accumulation factors in Scenario 3 (low invest-
ment yields)

t gt (%) f [0](0, t) f [1](0, t) f [2](0, t) f [3](0, t) f [4](0, t) f [5](0, t)

i ′ = 0.02 i ′ = 0.02 i ′ = 0
rmin = 0.02

i ′ = 0.02 i ′ = 0.02
k = 3

1 2.20 1.0200 1.0209 1.0209 1.0209 1.0209 1.0209

2 2.30 1.0404 1.0432 1.0432 1.0432 1.0432 1.0432

3 2.00 1.0612 1.0641 1.0641 1.0630 1.0630 1.0630

4 3.10 1.0824 1.0954 1.0954 1.0943 1.0943 1.0943

5 2.50 1.1041 1.1214 1.1214 1.1203 1.1203 1.1203

6 1.80 1.1262 1.1439 1.1439 1.1395 1.1395 1.1395

7 1.20 1.1487 1.1667 1.1667 1.1525 1.1525 1.1525

8 1.30 1.1717 1.1901 1.1901 1.1667 1.1667 1.1667

9 1.50 1.1951 1.2139 1.2139 1.1833 1.1833 1.2092

10 1.00 1.2190 1.2381 1.2381 1.1946 1.1946 1.2207

11 1.50 1.2434 1.2629 1.2629 1.2116 1.2116 1.2381

12 1.20 1.2682 1.2882 1.2882 1.2254 1.2254 1.2832

13 1.50 1.2936 1.3139 1.3139 1.2429 1.2429 1.3015

14 1.00 1.3195 1.3402 1.3402 1.2547 1.2547 1.3139

15 1.20 1.3459 1.3670 1.3670 1.2690 1.3459 1.3618

Fig. 7.1 Accumulation
factors in Scenario 1 (high
investment yields)

f [0](0, t) = (1 + i ′)t (traditional policy with fixed benefits), f [1](0, t) (annual
lock-in) and f [4](0, t) (maturity guarantee) in the three scenarios are plotted. Some
comments follow.

• High investment yields have been assumed in Scenario 1. As a result, accumu-
lation factors f [1](0, t), f [2](0, t), f [3](0, t), f [4](0, t), and f [5](0, t) coincide
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Fig. 7.2 Accumulation
factors in Scenario 2
(medium investment yields)

Fig. 7.3 Accumulation
factors in Scenario 3 (low
investment yields)

throughout the whole policy duration. See, in particular, Fig. 7.1 in which the time
profiles of f [1](0, t) and f [4](0, t) overlap.

• Scenario 2 is characterized by medium investment yields. The lock-in mechanism
works from time 5, and it leads at maturity to results higher than those produced
by the maturity guarantee mechanism. See also Fig. 7.2.

• Finally, low investment yields have been assumed in Scenario 3. A poor accumu-
lation would result at maturity if no guarantee mechanismworked. Conversely, the
maturity guarantee implies the final “jump” in the time profile of the accumulation
factor, leading to a result equal to (1 + i ′)m = 1.0215. Of course this implies a
cost and likely a loss for the insurer.

❑
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7.4 Unit-Linked Policies

The main feature of unit-linked policies is that the financial risk is borne by the
policyholder. The underlying insurance cover is usually an endowment; the premium
is invested into a unit fund, or reference fund, selected by the policyholder out of a
basket designed by the insurer. Commonly, the lines of investment which are made
available by the insurer implies different risk-return profiles; thus, the policyholder
can opt for more conservative or more dynamic asset combinations. The line of
investment selected by the policyholder may be changed later on, possibly against
the payment of a fee (the so-called switching fee). If a switching option has been
underwritten in policy conditions, the policyholder has the opportunity to change the
investment line at some dates at no cost.

The assetmanagement of unit-linked policies plays a primary role in this business;
the discussion of the several issues involved, however, is outside the scope of this
book. In the following we address only the actuarial issues which are involved in the
management of unit-linked policies.

7.4.1 Definition of Unit-Linked Benefits

The fund accumulated with premiums is called policy fund or policy account. Ben-
efits are defined in terms of the policy fund available at the time of payment. More
precisely:

• the survival benefit at maturity, the so-called maturity benefit is the current value
at maturity of the policy fund;

• the death benefit is the current value of the policy fund at the time of death, to
which a sum at risk is added, which is defined so that it is positive (or at least
non-negative);

• the surrender value is the current value of the policy fund at the time of surrender,
possibly net of a (small) surrender fee.

Given that benefits depend on the current value of the policy fund, a risk emerges for
the policyholder, as such a value is unknown before payment. Guarantees may be
provided; the sum at risk, for example, can be defined so that there is some embed-
ded guarantee on the death benefit. However, it is more usual to define guarantees
explicitly; a fee is then applied to meet the relevant cost.

Unit-linked policies are given this name because the reference fund is split into
a notional number of units. Benefits could then be though of as the current value
of the number of units which have been credited to the policy; such a number can
be assessed adopting the actuarial model used for fixed benefits, as we describe in
Sect. 7.4.2. What remains unknown before payment is the current value of a unit. In
this perspective, the benefit can be considered to be expressed in account units other
than the usual currency, whence the term unit-linked. However, as we will see in
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Sect. 7.4.2, the number of units which define the benefit is usually known just at the
beginning of the year of payment, and not earlier.

As account units, in principle reference can bemade to any quantitywhose value is
likely to increase in time, such as gold, some foreign currency, real estate, securities,
and so on. In practice, there is an Asset-Liability constraint: the insurer must be able
to buy or replicate the reference units, tomeet its liabilitywithout taking a (too strong)
basis risk. Account units which have been adopted by insurers are foreign currency
and investment funds. Nowadays, the standard choice is reference to investment
funds.

As far as the underlying insurance cover is concerned, we mentioned above that
the usual form is the endowment insurance. However, also whole life assurances (in
particular, financed by single recurrent premiums) can be realized with a unit-linked
arrangement; in this case, there would be no maturity benefit. Also life annuities can
be realized as unit-linked; however, the annual amount would fluctuate depending
on the current value of the reference fund, thus originating a severe risk for the
policyholder. In the following, we refer to an endowment insurance.

7.4.2 Unit-Linked Policies without Guarantees

Consider a unit-linked endowment insurance, including no financial guarantee. At
time t , a premium P [T]

t is paid, inclusive of expense loadings; the premium can
either be constant in time or not, depending on policy conditions. We denote by �t

the total expense loading at time t ; the initial commission is usually charged to the
first premium. After issue, the loading includes collection and general administra-
tive expenses, as well as asset management fees. The expense loading is typically
proportional to the size of the premium and the policy fund.

The net premium Pt ,
Pt = P [T]

t − Λt (7.4.1)

is invested into the reference fund. If we let wt denote the current value of a unit,
then

nt = Pt

wt
(7.4.2)

represents the number of units purchased by the insurer at time t with the net premium.
Information about the current value wt is made available to the policyholder; since
the policyholder is bearing the financial risk, he/she must receive full information
about the performance of the investment fund. The sum at risk originates a mutuality
cost, which needs to be funded. In principle, the net premium must be split into
savings premium and risk premium; in other words, the number nt is split into two
components: one (which we denote by n[S]

t ) is credited to the policy to contribute
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to savings, the other (which we denote by n[R]
t ) is used to meet mutuality costs.

Trivially,
nt = n[S]

t + n[R]
t (7.4.3)

We note that if nt = 0 (due to having set Pt = 0), then (7.4.3) would imply
n[S]

t = −n[R]
t ; if no premium is paid, annual costs (namely, the risk premium, as

well as expenses) are met by taking money from the policy account. This shows that
unit-linked arrangements allow quite easily for some flexibility in the choice of the
annual premium. Actually, from a technical point of view, it is not necessary that a
premium is paid in each year; as noted above, what is required is that the current
policy account is large enough to meet annual costs. However, appropriate policy
conditions must be designed in this case, such as those adopted in Universal Life
policies (see Sect. 7.9). In the following, wemean that Pt > 0 and such that n[S]

t > 0,
as is more usual for the policy design that we are addressing.

We let Nt denote the number of units totally credited to the policy at time t , before
premium payment. It is easy to understand that

Nt =
t−1∑
s=0

n[S]
s

(
and Nt <

t−1∑
s=0

ns

)
(7.4.4)

In order to perform the splitting (7.4.3), and then to calculate Nt , we need to assess
the amount of benefits, the sum at risk in particular.

First, we define the policy fund at time t , as follows:

Ft = Nt wt (7.4.5)

Note that Ft is assessed at current value, given that the financial risk is borne by the
policyholder. As usual, assets back liabilities. The reserve at time t , representing the
liability of the insurer, is simply defined as follows:

Vt = Ft (7.4.6)

The maturity benefit, which is the current value of the policy fund, is given by

Sm = Fm (7.4.7)

at time m. Earlier to time m, we can assess the amount which is funded by current
assets, as follows

St = Ft (7.4.8)

It is worth noting that, contrarily to fixed benefits and participating policies, the
maturity benefit gradually accumulates in time (similarly to what happens in the
case of single recurrent premiums; see Sect. 4.4.5); indeed, Ft is clearly the result of
the payments which have been made to date.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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The death benefit payable at time t is

Ct = Ft + Kt (7.4.9)

where Kt is the sum at risk, defined so that Kt ≥ 0. However, we note that if Kt = 0
(whatever the value of Ft ), then no mortality risk is taken by the insurer, and the
unit-linked policy should be considered as a purely financial product.

The death benefit can be defined in various ways. Two examples are as follows:

Ct = Ft (1 + α) (7.4.10)

i.e., Kt = α Ft , with α > 0, or
Ct = Ft + G (7.4.11)

i.e., Kt = G, with G > 0. We note that (7.4.11) embeds a financial guarantee, as
(excluding the case Ft < 0) we always have Ct ≥ G > 0. Conversely, no guarantee
is embedded in (7.4.10), as Ct = 0 if Ft = 0. The quantity α in (7.4.10) is simply
a proportion expressing the sum at risk; the quantity G in (7.4.11) can instead be
meant as a minimum death benefit guaranteed.

The surrender value at time t is usually defined as follows:

Rt = ϕ(t) Ft (7.4.12)

where 1 − ϕ(t) represents the surrender fee at time t (commonly very close to 0).
We can now calculate the number of units, n[S]

t , which are credited to the policy
fund at time t , after receiving the premium; we note that

n[S]
t = Nt+1 − Nt (7.4.13)

The number Nt+1 must be assessed so that assets and liabilities of the contract are on
actuarial balance in year (t, t +1). Extending the recursive Eq. (5.4.8) for the reserve
of insurance covers with fixed benefit, we can write the following equation relating
to year (t, t + 1)

(Ft + Pt )
wt+1

wt
= (Ct+1 − Ft+1) q ′

x+t + Ft+1 (7.4.14)

Equation (7.4.14) can be easily understood if compared to (5.4.8):

• reference is to a policy in-force at time t ;
• Ft represents the amount of assets available at time t , while Pt is the net premium
cashed at that time;

• assets are invested into the reference fund, whose yield in year (t, t + 1) is

zt+1 = wt+1

wt
− 1 (7.4.15)

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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(we note that zt+1 is unknown at time t);
• whatever happens, namely if the insured is still alive at the end of the year or not,
the policy fund Ft+1 will be available;

• in case of death during the year, the sum at risk Ct+1 − Ft+1 must be added to the
policy fund, so to pay the death benefit Ct+1 to beneficiaries.

Contrarily to (5.4.8), the equality in (7.4.14) is just notional, as not all the quantities
involved are known for sure. Let us assume the death benefit defined by (7.4.10); if
we replace into (7.4.14) the definitions introduced above for the several quantities
involved, we find:

(Nt + nt ) wt+1 = α Nt+1 wt+1 q ′
x+t + Nt+1 wt+1 (7.4.16)

Each term in (7.4.16) is proportional to wt+1; this allows us to change the account
unit, from the monetary unit to the reference fund unit. If we assume that wt+1 is
strictly positive, after dividing (7.4.16) by wt+1 we obtain

Nt + nt = α Nt+1 q ′
x+t + Nt+1 (7.4.17)

which is a balanced condition expressed in terms of investment units, in which all the
quantities involved are deterministic at time t . Thus, (7.4.17) can be used to calculate
Nt+1 (i.e., n[S]

t ). It is worth noting that quantities in (7.4.17) are deterministic only
at time t , i.e., after premium payment. Before that time, the number nt is random,
given that it depends on the current value of a unit (see (7.4.2)).

Solving (7.4.17), we find

Nt+1 = Nt + nt

α q ′
x+t + 1

(7.4.18)

and then

n[S]
t = Nt+1 − Nt = nt − α Nt q ′

x+t

α q ′
x+t + 1

(7.4.19)

n[R]
t = (nt + Nt )

α q ′
x+t

α q ′
x+t + 1

(7.4.20)

Of course, it turns out n[S]
t < nt .

The definition of the risk and the savings premium is now straightforward. We
have

P [R]
t = n[R]

t wt (7.4.21)

P [S]
t = n[S]

t wt (7.4.22)

The development in time of the risk premium depends on several factors, namely
the mortality rate (which is increasing throughout the policy duration), the size of

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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the sum at risk (which is proportional to the size of the policy fund), and the current
value of a unit. What is important to note is that, after premium payment, the balance
condition (7.4.17) implies no financial risk for the insurer. This is a consequence of
defining the benefits so that they are proportional to the current value of one unit.
However, Eq. (7.4.17), if considered before time t , reveals a financial risk for the
insurer, as the number of units which are purchased year by year is unknown, and
then the number of units credited to the contract is also unknown, because these
numbers depend on the value of one unit at the time of premium payment. Thus,
the number of units which define a benefit (the maturity, the death, or the surrender
benefit) are known for certain just at the beginning of the year of possible payment.

Example 7.4.1 Consider a unit-linked endowment, with no financial guarantee,
issued for a person age x = 50, maturity m = 15, death benefit Ct+1 = 1.10 Ft+1
(then, α = 0.10). The life table is LT1 (while no technical interest rate needs to be
assigned, as the financial risk is not transferred to the insurer). Table7.18 provides an
example of development of benefits throughout time. Information about the number
of units purchased and credited at any policy anniversary is also included, as well as
information about the risk premium and the savings premium.

Note the decreasing behavior of nt , due to the increasing value of a unit (while
the net premium remains constant). The risk premium is increasing in time, and this
is due to the death probabilities and to the fact that the sum at risk increases in time.
The magnitude of the risk premium is anyhow very small, given that the sum at risk
is not very large. ❑

Table 7.18 Unit-linked endowment insurance; Ct+1 = 1.10 Ft+1

t Pt wt zt (%) nt Nt n[S]
t P [R]

t P [S]
t Ft Ct Ct − Ft

0 100 1.00 100.00 0.00 99.97 0.03 99.97 0.00

1 100 1.04 4 96.15 99.97 96.08 0.08 99.92 103.96 114.36 10.40

2 100 1.08 4 92.46 196.05 92.34 0.13 99.87 212.04 233.25 21.20

3 100 1.12 4 88.90 288.38 88.73 0.20 99.80 324.39 356.83 32.44

4 100 1.17 4 85.48 377.11 85.24 0.28 99.72 441.16 485.28 44.12

5 100 1.22 4 82.19 462.35 81.88 0.38 99.62 562.52 618.77 56.25

6 100 1.27 4 79.03 544.24 78.64 0.50 99.50 688.63 757.50 68.86

7 100 1.32 4 75.99 622.88 75.50 0.64 99.36 819.66 901.63 81.97

8 100 1.37 4 73.07 698.38 72.47 0.82 99.18 955.78 1051.36 95.58

9 100 1.42 4 70.26 770.85 69.54 1.03 98.97 1097.16 1206.88 109.72

10 100 1.48 4 67.56 840.39 66.69 1.28 98.72 1243.98 1368.38 124.40

11 100 1.54 4 64.96 907.08 63.93 1.58 98.42 1396.42 1536.06 139.64

12 100 1.60 4 62.46 971.02 61.25 1.93 98.07 1554.63 1710.10 155.46

13 100 1.67 4 60.06 1032.27 58.64 2.35 97.65 1718.81 1890.69 171.88

14 100 1.73 4 57.75 1090.92 56.10 2.85 97.15 1889.11 2078.02 188.91

15 1.80 4 1147.02 2065.71 2272.28 206.57
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We have used above the terms risk premium and savings premium. This termi-
nology is not the usual one for unit-linked policies. A unit-linked policy is mainly
designed to provide an appropriate investment opportunity, joint to some protection
in case of early death. The benefit corresponding to the policy fund is then simply
addressed as the savings, or investment, of the policyholder, and the quantity P [S]

t
is named the invested premium (or invested amount). In this perspective, the sum at
risk is a supplementary (or rider) benefit, and then the quantity P [R]

t is dealt with
as a fee for supplementary (or rider) benefits. Under (7.4.10), it is likely that the
risk premium is increasing, as plotted in the example of Table7.18. Insurers often
prefer to apply a constant fee for the rider benefits, similarly to any other fee. Some
approximations then result in respect of the example provided in Table7.18, as a
sort of level risk premium must be assessed. The magnitude of the risk premium is
usually so low that such approximations are negligible in this case.

Let us now consider the death benefit defined by (7.4.11). If we replace the various
quantities in (7.4.14), we find

(Nt + nt ) wt+1 = G q ′
x+t + Nt+1 wt+1 (7.4.23)

from which we obtain

Nt+1 = Nt + nt − G q ′
x+t

wt+1
(7.4.24)

The quantitywt+1 in (7.4.24) (and in (7.4.23)) is unknown; in order to calculate Nt+1,
an estimate of wt+1 is required. This implies some financial risk for the insurer; such
a risk is originated by the fact that the death benefit embeds a fixed benefit (which,
as we have mentioned above, represents a guaranteed minimum benefit). This is a
reason why the definition of the death benefit highly preferred by insurers in unit-
linked policies with no guarantees is given by Eq. (7.4.10).

7.4.3 Unit-Linked Policies with Financial Guarantees

As described at the beginning of Sect. 7.4, in unit-linked policies the financial risk is
borne by the policyholder. Partially, the risk can be transferred to the insurer, through
the underwriting of appropriate guarantees.

Guarantees may relate to any of the benefits provided by the insurance cover:

• the maturity guarantee concerns the maturity benefit;
• the death benefit guarantee is given on the death benefit;
• the surrender guarantee concerns the surrender value.

In the following, we disregard the surrender guarantee, and we assume that the same
type of guarantee is provided for the maturity and the death benefit. This way, we
shorten a little bit the notation; anyhow, it is not difficult to address more general
cases, in which the maturity and the death benefit guarantees are different.
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Fig. 7.4 Guaranteed benefit
Bt+1 = max{Ft+1, G};
annual constant premiums

The guarantee is defined specifying the minimum benefit amount. If, because of
adverse financial trends, the policy fund at the time of payment is not high enough,
the minimum amount will be paid. Generically, we let Bt be the benefit due at time
t ; if t = 1, 2, . . . , m − 1 it is a death benefit, while if t = m it is the benefit paid
at maturity, either in case of death or survival (given that we are assuming that the
same guarantee is provided for the maturity and the death benefit).

The guaranteed amount can be stated according to different targets. The simplest
case is to set a fixed guaranteed amount G. The benefit at time t + 1 is then defined
as follows:

Bt+1 = max{Ft+1, G} (7.4.25)

For an example, see Fig. 7.4.
The quantity

Kt+1 = Bt+1 − Ft+1 = max{G − Ft+1, 0} (7.4.26)

represents the sum at risk, and corresponds to the pay-off of a put option (see also
Sect. 7.5).

Alternative definitions of the guaranteed amount are chosen so that the difference
Bt+1 − Ft+1 corresponds to the pay-off of a given financial option.

Remark When a financial guarantee is underwritten, a financial risk emerges for the insurer. Such
a risk needs to be appropriately hedged, through a suitable asset management strategy. Similarly to
what noted for participating policies, before underwriting a guarantee, the insurer must investigate if
it is possible to hedge it. Therefore, usually the insurer investigates the hedging strategies available
on the market, and then selects the guarantee offered to the policyholder.

For example, under the benefit

Bt+1 = max{Ft+1,max{Fs}s=0,1,...,t } (7.4.27)
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Fig. 7.5 Guaranteed
benefit Bt+1 = max{Ft+1,

max{Fs}s=0,1,...,t }; single
premium

time

Ft+1

Bt+1

it is guaranteed that the minimum amount paid at time t + 1 is the highest value of
the policy fund experienced at the previous policy anniversaries; see Fig. 7.5. The
guaranteed amount in this case is defined as follows:

Gt = max{Fs}s=0,1,...,t (7.4.28)

(where the suffix t denotes that such an amount is known at the beginning of year
(t, t + 1)). The sum at risk is

Kt+1 = Bt+1 − Ft+1 = max{max{Fs}s=0,1,...,t − Ft+1, 0} (7.4.29)

and this corresponds to the pay-off of a ratchet option.
With reference to the maturity benefit, the following guarantee

Sm = max{Fm, Gm−1} (7.4.30)

where

Gm−1 =
m−1∑
t=0

P [S]
t (1 + i ′)m−t (7.4.31)

is similar to the guarantee embedded in the accumulation factor f [4](s, m) for par-
ticipating policies (see (7.3.28)).

Some remarks on the valuation of guarantees are presented in Sect. 7.5.

Remark It should be clear that in unit-linked policies, the asset perspective is prevailing. It is
enough to look at the way the reserve, i.e., the value of the insurer’s liability, is defined when no
guarantee is provided (see (7.4.6)). Indeed, unit-linked policies are considered to be an asset-driven
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Fig. 7.6 Interaction between
assets and liabilities

Assets

Assets

Assets

Assets

Liabilities

Liabilities

Liabilities

Liabilities

Fixed-benefit policies

Unit-linked policies

Participating policies
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business. In contrast, fixed-benefit policies, for which the definition of liabilities comes before the
selection of assets, are considered to be a liability-driven business. The distinction mainly relies on
the party bearing the financial risk, namely the insurer for liability-driven arrangements, the policy-
holder for asset-driven solutions. Typical of a liability-driven business is a conservative assessment
of the liabilities, and assets as well; for an asset-driven business, a market-consistent valuation is
instead the natural choice.
Participating policies, as well as unit-linked policies with financial guarantees are somewhat at an
intermediate step between a liability-driven and an asset-driven business. Basically, participating
policies are liability-driven, as is suggested by the approach adopted for the calculation of premi-
ums and reserves. However, the benefit amount, and then the insurer’s liability, is affected by the
investment performance. Similarly, unit-linked policies with financial guarantees are asset-driven;
however, since the guarantees transfer risk to the insurer, conservative valuation assumptions are
required in this regard. In particular, an additional reserve in respect of the reserve (7.4.6) may be
necessary, which should be assessed consistently with the cost of the guarantee.
Figure7.6 provides a graphical representation of the comments developed in this Remark. The large
arrows, in particular, show which is the starting point for the assessment of the value of assets and
liabilities, or for their management: the liabilities for fixed benefits and participating policies, the
assets for unit-linked policies (with or without guarantees). In the case of participating policies, the
small arrow expresses that the value of the liability must be updated according to the investment
performance, while the small arrow in the case of unit-linked policies with guarantees recalls that
the liability originated by the guarantee requires an appropriate hedging, and then an appropriate
selection of assets.

7.5 Financial Options in Unit-Linked and Participating
Policies

As we have already noted, it goes beyond the scope of this book to deal with issues
related to asset management and asset valuation. In this section, we just provide a
description of the structure of the financial options included in life insurance policies.
In Sect. 7.5.2, in particular, we address the valuation of such options in one example,
just aiming at outlining the main issues of such a valuation.
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7.5.1 The Structure of Minimum Guarantees

We first refer to a unit-linked endowment insurance, including a guarantee on the
death and the maturity benefit. The guarantee is defined so that the benefit payable at
maturity in case of death is the same as the maturity benefit. We disregard guarantees
concerning the surrender value.

The benefit payable at time t + 1 (in case of death or, if t + 1 = m, survival or
death) is defined as follows:

Bt+1 = max{Ft+1, Gt } (7.5.1)

where Gt is the guaranteed amount, known at time t at the latest. Rearranging (7.5.1),
the benefit can be expressed as follows:

Bt+1 = Ft+1 + max{Gt − Ft+1, 0} (7.5.2)

or as follows
Bt+1 = Gt + max{Ft+1 − Gt , 0} (7.5.3)

According to (7.5.2), the benefit consists of the policy fund (whose value is unknown)
and the pay-off of a put option, with strike Gt and underlying the reference fund.
The maturity of the option is time t + 1, the time of possible payment of the benefit.
Conversely, according to (7.5.3) the benefit consists of a fixed amount Gt , like a
traditional policy, to which the pay-off of a call option is added. The strike, the
underlying and the maturity of the call option are clearly the same as those of the
put option (given that we are describing the same benefit). For unit-linked policies,
the description provided by (7.5.2) is more natural than (7.5.3), as the main feature
of the arrangement is to realize an investment in the reference fund. However, when
addressing the calculation of the cost of the guarantee, sometimes it is easier to assess
the cost of a call option, and then reference would be made to (7.5.3).

According to the way the strike is defined, we can investigate further the structure
of the option. If Gt = G, constant, the option is European-like, while if Gt depends
on the past performances of the policy fund, such as in (7.4.28), the option is path-
dependent. If Gt is a function of the premiums paid, such as in (7.4.31), the guarantee
is endogenous. If guarantee (7.4.28) is chosen and a single premium was paid, the
value of the option just depends on the investment performance (whilst when it is
endogenous its value also depends on choices concerning the invested amount).

If a guarantee is underwritten in a unit-linked policy, a fee is required to the pol-
icyholder. In general, it is easier to assess the cost of a European-like option than
of a path-dependent option, as well as it is easier to evaluate an option with exoge-
nous guarantees than with endogenous guarantees. A market-consistent assessment
is required, following the common practice for the pricing of financial derivatives.
This requires a calibration to market data, even if the option is not traded directly on
the market. Reference should be made to similar options. However, options traded
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in financial markets have many differences in respect of those included in life poli-
cies, such as the maturity (which is typically shorter for traded options), a different
underlying, a different strike. Further, it must be noted that the exercise of options in
(7.5.2) and (7.5.3) is subject not only to economic events (namely: it is convenient to
exercise the call option if Ft+1 > Gt , while it is convenient to exercise the put option
if Ft+1 < Gt ), but also to the lifetime of the insured. Indeed, the benefit at time t +1
is payable in case of death (or survival); this aspect adds complexity to the valuation
of the insurer’s liability. Some details in this regard are provided in Sect. 7.5.2.

Addressing now surrender guarantees, we note that they may be expressed sim-
ilarly to (7.5.1); clearly, the benefit would be the surrender value Rt+1 instead of
Bt+1. The guaranteed amount Gt is usually defined so to provide a financial pro-
tection to the investment of the policyholder; therefore, the amount Gt typically
implies a minimum (annual or average) return on the amount invested. The exercise
of the surrender guarantee depends on economic events (the exercise is convenient if
Gt > Ft+1), but also on preferences of the policyholder (whether to maintain or not
the policy). This latter aspect is very hard to model; surrender guarantees represent
important costs for insurers, but their assessment is still an open problem, due to the
difficulty in representing individual preferences.

We make a final comment in respect of participating policies. In Sects. 7.3.1 and
7.3.2, we have already commented on the financial options which are embedded. We
give here just an example about how to explicit the pay-off of the relevant option.
Assume that the accumulation factor f [1](s, t) is adopted (see (7.3.16)). After some
rearrangements, such a quantity can be expressed as follows:

f [1](s, t) = (1 + i ′)t−s
t∏

h=s+1

(
1 + max

{
ηt gt − i ′

1 + i ′
, 0

})
(7.5.4)

The factor (1 + i ′)t−s represents the minimum guaranteed accumulation, while∏t
h=s+1

(
1 + max

{
ηt gt −i ′
1+i ′ , 0

})
is originated by call options on the yield of the

investment fund. The accumulation factor f [1](s, t) could be rearranged so to explicit
the pay-off of put options, but for participating policies the description provided by
(7.5.4) is more natural, as first of all a participating policy guarantees a given return,
and possibly an extra-yield.

7.5.2 The Valuation of Financial Options in a Unit-Linked
Policy

As we have mentioned in Sect. 7.5.1, the valuation of financial options included in
life insurance covers is complex. In this section, we aim at providing some remarks
on how the different events to which the exercise of such an option is subject should
be accounted for.
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Refer to a unit-linked endowment insurance, issued with a single premium. The
death benefit and thematurity benefit are defined as in (7.5.1), withGt = G, constant.
We assume that no guarantee is provided on the surrender value (which is then simply
the policy fund, possibly net of a surrender fee). The single expense-loaded premium
Π [T] is split into three components:

• the management fees and the acquisition costs, Θ;
• the invested amount, Π [S];
• the fee for rider benefits (namely, for the sum at risk), Π [R].

The above notation is similar to what adopted for traditional policies (namely, for
the expense loading, the savings and the risk premium); however, the meaning of the
several quantities is not the same as for traditional policies, and must be meant as
specified above.

The quantity Π [S] is invested into the selected fund. We assume

Π [S] = N w0 (7.5.5)

where N is the number of units which are credited to the policy. The quantity N is
determined so that the policy fund always consists of N units, i.e.,

Ft = N wt (7.5.6)

Replacing (7.5.6) into (7.5.1), we can express the benefit at time t as follows

Bt = N wt + max{G − N wt , 0} (7.5.7)

or, setting G = N × E , as

Bt = N wt + N max{E − wt , 0} (7.5.8)

According to (7.5.8), the benefit consists of N units of the reference fund and N put
options, each with underlying a unit of the reference fund and strike E . It is easy to
rewrite (7.5.8) so to explicit the pay-off of call options.

The present value at time 0 of the benefit payable at time t , which we denote as
V0(Bt ), can be assessed as follows:

V0(Bt ) = N w0 + N P0(t) (7.5.9)

where P0(t) is the value (or price) at time 0 of a put option with maturity at time
t , strike E , and underlying one unit of the reference fund. The price P0(t) must be
assessed through an appropriate financial model; for example, if we accept standard
assumptions (namely: the risk-free rate is deterministic and constant, the current
value of the underlying follows a geometric standard Brownian motion, and so on),
the Black and Scholes formula applies. Quite often standard assumptions are not
appropriate, and numerical techniques must be used instead of a closed formula.
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The benefit Bt is paid at time t depending on the lifetime of the insured. Given an
appropriate life table, through which the mortality rates qx+t are assessed, we expect
that

• a proportion t−1|1qx of the policies issued at time 0 will receive the benefit Bt at
time t , t = 1, 2, . . . , m − 1 (namely, because death occurs in year (t − 1, t));

• a proportion m−1 px =m−1|1 qx + m px of the policies issued at time 0 will receive
the benefit Bm at time m (namely, in face of the insureds either dying in the last
year, or alive at maturity).

To realize the actuarial balance between the premiumand the benefit, the following
condition must be fulfilled

Π [T] − Θ =
m−1∑
t=1

t−1|1qx V0(Bt ) + m−1 px V0(Bm) (7.5.10)

Rearranging, we have

Π [T] − Θ = N w0 +
(

m−1∑
t=1

t−1|1qx NP0(t) + m−1 px NP0(m)

)
(7.5.11)

As stated by (7.5.5), the quantity N w0 represents the invested amount; the quantity
in brackets represents the amount Π [R] meeting the cost of supplementary benefits,
i.e., the cost of mutuality and of the guarantee. According to the fees, the current
value of a unit of the reference fund, the price of the financial options and mortality
rates, Eq. (7.5.11) allows to determine the number N of units which can be credited
to the policy.

Note that in (7.5.10), and then in (7.5.11), independence between the lifetime
of the insureds and the return on the reference fund is implicitly assumed. Such an
assumption is reasonable; what is not trivial is how the probabilities qx+t should
be chosen (actually, we have used a generic notation, not specifying whether they
are realistic or prudential). Following the pricing principles of traditional benefits, a
conservative choice should be taken; given that we are dealing with an endowment,
mortality rates higher thanwhat is realistic should in particular be involved. However,
due to the cost of the guarantees, not necessarily this is a choice on the safe-side.

7.6 Hybrid Products

The hybrid products aim at combining the features of participating policies (i.e., the
embedded financial guarantees and a rather low return profile) with those of unit-
linked policies (that is, a higher risk-return profile). Combining these features can
result in a return higher than that provided by participating policies, while keeping
the guarantee of a minimum return.
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Fig. 7.7 Hybrid products: the basic structure

The typical underlying contractual form is a whole life insurance, financed by a
single premium or a sequence of single recurrent premiums. For simplicity, we first
refer to a single premium.

At policy issue, the gross premium Π [T] is cashed, and net single premium Π is
split as follows (see Fig. 7.7):

• a share of the premium is invested into the segregated fund, and hence maintains
the participating component of the contract;

• the remaining share is invested into the unit fund, and hence maintains the unit-
linked component of the contract.

Usually, the unit-linked component does not provide any guarantee of minimum
return. Conversely, the participating component has the following financial features:

• a minimum interest guarantee i ′ (possibly, i ′ = 0);
• a target rate of return ḡ (ḡ > i ′), which is not guaranteed but can (and hopefully
is) achieved via an appropriate management of the funds (see below).

An annual rebalancing between segregated fund and unit fund will be performed
in order to achieve the target ḡ even if the return, gt from the segregated fund is lower
than ḡ, while keeping the highest possible amount invested in the unit fund. More
precisely, consider the following situations.

1. gt = ḡ: the return ḡ is credited to the segregated fund; no rebalancing is needed;
see Fig. 7.8.

2. gt > ḡ: the return ḡ is credited to the segregated fund; the amount corresponding
to the share of return which exceeds the target ḡ is transferred to the unit fund;
see Fig. 7.9.
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Fig. 7.8 Segregated fund and unit fund: time profiles (1)

Fig. 7.9 Segregated fund and unit fund: time profiles (2)

Fig. 7.10 Segregated fund and unit fund: time profiles (3)

3. gt < ḡ: an amount is transferred from the unit fund to the segregated fund in
order to meet the target ḡ; see Fig. 7.10.

In the case of single recurrent premiums, two alternative possibilities are usually
offered:

• at each premium payment, the policyholder chooses the shares to be invested in
the segregated fund and the unit fund respectively (see Fig. 7.7, now referring to
each recurrent premium);

• the shares are stated at the policy issue, and are applied whatever the amount of
each recurrent premium.
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In the second case, a rebalancing strategy might be required and applied, similar
to that in-force in the case of a single premium.

7.7 With-Profit Policies

With-profit policies represent a traditional UK business. Similarly to participating
policies, they guarantee a given return on investment, while distributing (part of) the
realized extra-yield to policyholders. They are typically issued with annual constant
premiums.

The main difference in respect of participating policies consists in the way profit
is assigned; in with-profit policies, a bonus is added in each year to the benefit, which
is defined according to a given rule. According to the prevailing practice, bonuses are
calculated so that the release of profit is smoothed in time. This is obtained adopting
parameters which are approximately constant (in particular, they should be constant
if the yield on investment is flat). However, as we illustrate below, this may imply
that in some years the bonus is too high in respect of the yield realized in that year
on the investment of the policyholder. To avoid major costs for the insurer, some
rules for the calculation of bonuses are designed so to slow down the distribution of
unrealized gains, while maintaining an apparent smoothed release of profit.

Three types of bonus can be identified:

• reversionary bonus;
• terminal bonus;
• guaranteed bonus.

The reversionary bonus is funded through financial profit. Once it has been
assigned, it is locked-in. Let B[rev]

t be the reversionary bonus at time t . Similarly
to the adjustment of the reserve in participating policies, B[rev]

t is assigned to in-
force policies. Following time t , the benefit amount cannot be lower than

Gt = C +
t∑

s=1

B[rev]
s (7.7.1)

where C is the initial guaranteed amount of the benefit (namely, the amount referred
to for premium calculation), given that the current and the previous reversionary
bonuses are locked-in.

The benefit paid at time t (in case of death if t < m, either in case of survival or
death if t = m) is defined as follows:

Ct = Gt−1 + B[term]
t (7.7.2)

where B[term]
t is the so-called terminal bonus. The goal of the terminal bonus is to pay

the profit not yet released; it is required B[term]
t ≥ 0, given that reversionary bonuses

are locked-in (and the initial benefit amount is guaranteed). Conversely, it may turn
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out B[term]
t � B[term]

t−1 , as no specific guarantee is provided on the terminal bonus. It

is not unusual that B[term]
t > B[rev]

t , as we justify below. We finally note that, given
the terminal bonus at maturity, no reversionary bonus at maturity is assigned.

Contrarily to the reversionary and terminal bonuses, the guaranteed bonus is
explicitly funded by premiums, which are determined (at policy issue) accounting
for the annual increase of the benefit originated by the guaranteed bonus. Indeed,
the guaranteed bonus simply consists in an annual increase of the benefit amount.
If a guaranteed bonus has been underwritten, the guaranteed benefit amount since
time t is

Gt = C +
t∑

s=1

B[rev]
s +

t∑
s=1

B[guar]
s (7.7.3)

where B[guar]
s is the bonus guaranteed at time s.

As mentioned above, for with-profit policies it is common to obtain (or to show) a
smoothed release of profit in time. Rules for the calculation of reversionary bonuses
are defined so to slow down the distribution of unrealized gains. We examine some
of these rules, just to give an idea on how this target can be reached. We refer to
an endowment with-profit policy, with initial benefit amount C and level premium
P . Similarly to participating policies, the premium P is calculated as if the policy
was with fixed benefits; namely, P is calculated taking C as a constant benefit (if a
guaranteed bonus applies, reference would bemade toC for the first year,C + B[guar]

1
for the second year, and so on; for brevity, we disregard this case).

A possible rule for the calculation of the reversionary bonus is the linear rule,
according to which

B[rev]
t = αt C (7.7.4)

where αt , αt ≥ 0, is the bonus proportion at time t . An alternative rule is the
exponential (or compound) rule, under which

B[rev]
t = βt Gt−1 = βt

(
C +

t−1∑
s=0

B[rev]
s

)
(7.7.5)

In principle, αt or βt should be assessed referring to the extra-yield on the invest-
ment of the policyholder realized in year (t − 1, t). However, according to usual
practice, they are set more or less constant in time. Basically, the idea is to distribute
year by year a share of the total profit which is expected to be realized by matu-
rity. This originates some cross-subsidy effects throughout time and among cohorts,
which may produce some costs for the insurer. In order to understand better, it is
worth making a comparison with participating policies.

The reversionary bonus B[rev]
t can be compared with the benefit update j [B]

t Ct

of participating policies. In particular, the proportion βt in (7.7.5) can be directly
compared to j [B]

t . It is useful to refer to the example in Table7.1, where the extra-
yield on investment (and then profit, in relative terms) is constant in time. Since
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j [�]
t = 0 (i.e., premiums are constant, as for with-profit policies), we find that j [B]

t is
increasing in time. Consistently, the proportion βt in (7.7.5) should be increasing. If,
as it occurs in practice, it is set constant in time, then when t is small the proportion
βt = β is higher than what justified by current profits, whilst when t is close to
maturity βt = β is smaller than what justified by current profits (we note that βt

is not exactly constant in practice, as to some extent it follows the fluctuations of
the experienced investment yield). Overall, at any time t the insurer is assigning a
too high bonus to policies recently issued, and a too low bonus to policies close to
maturity. If the portfolio composition is appropriate, the insurer can be on balance.
Anyhow, a cross-subsidy effect emerges among the different cohorts.

Considering the policyholders’ expectation for a constant bonus proportion, rule
(7.7.5) is preferable to (7.7.4), from the point of view of the insurer. It is easy to justify
why. Assume that (7.7.4) is adopted with αt = α, constant. Then, the guaranteed
benefit at time t is

Gt = C (1 + α t) (7.7.6)

Similarly, if we assume βt = β, constant, in (7.7.5), we find for the guaranteed
benefit at time t

Gt = C (1 + β)t (7.7.7)

Assume that the terminal bonus is calculated following the same rule of the rever-
sionary bonus. In this case, the benefit at maturity can be expressed as Gm . Given
the total profit realized by maturity, Eqs. (7.7.6) and (7.7.7) should result in the same
amount Gm , i.e., we should find

(1 + α m) = (1 + β)m (7.7.8)

Condition (7.7.8) requires β < α. It can be easily checked that if β < α, then for
t < m

(1 + α t) > (1 + β)t (7.7.9)

Thus, provided that the amount of profit distributed in total is the same, the release
of profit in time is slower if an exponential reversionary bonus is adopted (with a
constant proportion β).

Example 7.7.1 Refer to a with-profit endowment insurance, with initial sum insured
C = 1 000 and maturity m = 10. Assume that the total amount at maturity of the
bonuses is 300, i.e.,

∑9
t=1 B[rev]

t + B[term]
10 = 300. Expressing the terminal bonus

with the same rule of the reversionary bonus and adopting a constant proportion,
for the linear rule we find α = 0.03, and for the exponential rule β = 0.02658.
It can easily be verified that 1 000 (1 + 0.03 t) > 1 000 × 1.02658t at any time
t < 10. At time 5, for example, the guaranteed amount according to the linear rule is
G5 = 1 000 (1 + 0.03 × 5) = 1 150, while the exponential rule yields
G5 = 1 000 × 1.026585 = 1 140.16. ❑
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A rule further slowing down the release of profit is the so-called supercompound
rule, which defines the reversionary bonus as follows:

B[rev]
t = γt C + δt

t−1∑
s=1

B[rev]
s (7.7.10)

In this case, the reversionary bonus has both a linear and an exponential component.
An appropriate choice of the parameters γt and δt can result in a reduced rate of
increase of the guaranteed amount.

Example 7.7.2 Refer to Example7.7.1. If we set γt = γ = 0.02, after some little
algebra we find that if δt = δ = 0.08732, then

∑9
t=1 B[rev]

t + B[term]
10 = 300. We can

verify that at time t < 10, it turns out Gt < 1 000 × 1.02658t < 1 000 (1 + 0.03 t).
At time 5, for example, the guaranteed amount is G5 = 1 119.06, which can be
compared with the amounts quoted in Example7.7.1 for the linear and the exponen-
tial rule. ❑

Of course, given a rule for the calculation of the reversionary bonus, a straightfor-
ward way to avoid the release of unrealized profits consists in setting the value of the
bonus proportion lower than what would be required by the total profit expected dur-
ing the policy duration; in other words, the bonus proportion should be chosen with
a conservative view. The terminal bonus ensures that in case of immediate payment
the beneficiary would receive the extra-yield really gained so far on the investment of
the policyholder. Indeed, while the development in time of the minimum guaranteed
amount is slowed down, the actual benefit would be in line with the realized gain on
investment.

7.8 Index-Linked Policies

Index-linked policies are endowment-like contracts, funded with a single premium,
whose benefit amount is linked to the performance of a stock-market index, the so-
called reference index. A guarantee is provided for the maturity benefit, as this is
defined as the single premium (also called invested amount) rolled-upwith the highest
between an accumulation factor depending on the performance of the reference index
and a guaranteed accumulation factor. The reference index is usually based on a wide
basket of stocks, so to smooth extreme fluctuations; possibly, a mix of indexes is
referred to, with the aim of improving such a smoothing.

Let It denote the value at time t of the reference index. A given function �,
the participating rule, defines the accumulation factor based on the performance of
the reference index during the policy duration. In principle, the participating rule
depends on the whole path of the reference index during the policy duration; the
specific form of � may address just some aspects of such a path (see below for some
examples).
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The maturity benefit is defined as follows

S = Π × max{γ,�(I0, I1, . . . , Im)} (7.8.1)

where Π is, as usual, the net single premium and γ the guaranteed accumulation
factor (as it is reasonable, the expense loading is not accounted for in the rolling-
up of the single premium). An alternative expression for the maturity benefit is the
following:

S = Π γ + Π × max{�(I0, I1, . . . , Im) − γ, 0} (7.8.2)

where Π γ is the guaranteed benefit, while Π × max{�(I0, I1, . . . , Im) − γ, 0} is
the pay-off of a call option on the reference index, with strike γ and maturity m.

Several choices can be made in respect of the guaranteed accumulation factor γ :

• γ = 0 (the arrangement is referred to as index-linked with no explicit guarantee);
• 0 < γ < 1 (index-linked with a partial guarantee);
• γ = 1 (index-linked with a guaranteed principal);
• γ > 1 (index-linked with guaranteed interest).

At a first instance, it could seem difficult to accept γ ≤ 1. However, first it must be
noted that through the index-linked policy the policyholder realizes an investment in a
stock-market index; as is well-known, stock-market indexes are subject to downward
fluctuations. In this case, a guaranteed principal may be of interest. Further, it must
be considered that the premium has to fund both the guaranteed amount and the
call option. The lower the guaranteed amount, the higher the amount available for
investing in the call option, and then in the participation to the performance of the
reference index.We further note that, depending on the option, some guarantees may
be embedded into its pay-off, so that a high γ would be unnecessary.

The integral participating rule is a very simple example of participation to the
performance of the index. Let

gt = It

It−1
− 1 (7.8.3)

be the rate of change of the reference index in year (t − 1, t). Due to the nature of
the index It , we may experience gt � 0. The participating rule is defined as follows:

�(I0, I1, . . . , Im) = (1 + g1) (1 + g2) . . . (1 + gm) = Im

I0
(7.8.4)

In practice, the option embedded in (7.8.1) is European-style. Clearly, it may turn
out Im

I0
< 1. However, if Im

I0
< γ the guaranteed amount would be paid at maturity.

In the Cliquet participating rule, the single premium is rolled-up in year (t −1, t)
at the rate

jt =

⎧⎪⎨
⎪⎩
0 if gt < 0

gt if 0 ≤ gt < g′

g′ if gt ≥ g′
(7.8.5)
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where g′ expresses the maximum annual rate of increase of the reference index
admitted for the rolling-up of the single premium; for example, g′ = 0.20. The
participating rule is defined as follows

�(I0, I1, . . . , Im) = α (1 + j1) (1 + j2) . . . (1 + jm) (7.8.6)

where α, α > 0, is a participating proportion, amplifying (if α > 1) or com-
pressing (if α < 1) the change of the reference index. We note that jt ≥ 0; thus
�(I0, I1, . . . , Im) ≥ α, i.e., the Cliquet participating rule embeds a minimum accu-
mulation guarantee. Indeed, past positive jumps of the reference index are locked-in.
Depending on the proportion α and on the possible path of the reference index, the
option implied by the Cliquet participating rule could be more expensive than that
implied by the integral participating rule.

The pay-off described by (7.8.1) is that of a structured Zero Coupon Bond or index-
bond. This is the asset backing the policy. Usually, the insurer purchases index-bonds
issued by investment banks; this explains why the index-linked policy is issued at
single premium (annual premiums would require that index-bonds with the features
specified in (7.8.1) are available also after issue, and the insurer cannot be certain
about this). A default risk emerges, which should be borne by the insurer.

In case of early termination of the contract, because of death or surrender, a benefit
is paid. The death benefit is usually defined as the current value of the index-bond,
increased by a given proportion (say, 5 or 10%). The beneficiaries are usually given
the possibility of keeping the investment until maturity, if they think that it is not
currently convenient to cash the investment.We point out that the amount of the death
benefit is not guaranteed, as the factor γ just concerns the maturity benefit. We also
note that the insurance component is negligible; basically, the index-linked policy is
an investment product. Consistently, the surrender value is the current value of the
index-bond, possibly reduced by a (small) fee. No guarantee applies to this benefit.

The expense-loaded premium Π [T] consists of three components: the expense
loading (which is referred to as management fees), the cost of the index-bond and
the cost of mutuality. This latter component is usually assessed approximately, due
to the small size of the sum at risk. The reserve is simply the value of the index-bond,
possibly increased by a small proportion, to account for the death benefit.

7.9 Universal Life Policies

Universal Life (UL) policies are typical products of the US market, which can be
designed either as participating or unit-linked policies. Their main features consist
in a high flexibility available to the policyholder in deciding year by year:

• the amount of premium,
• to make a partial withdrawal,
• the type of investment backing the reserve,
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and so on. Further, similarly to a bank account, the policyholder receives a periodic
statement, showing the initial and periodic expenses (acquisition costs, management
fees, fees for rider benefits, and so on) that have been charged to his/her policy
account. If the policy is designed on a unit-linked basis, the current value of the
policy assets is reported in the statement; if a participating arrangement is designed,
the statement reports the annual adjustment which has been credited to the reserve.

The underlying contractual form is a whole life assurance. This way, the contract
has no specified maturity; the contract terminates either because of death or full
withdrawal. The sum at risk is defined so that it is positive; see examples provided
in Sect. 5.4.4.

The UL is a complex product for the insurer. The flexibility granted to the poli-
cyholder originates many risks. For example, it is difficult to predict future profits,
due to the uncertainty on the premium level; the possibility of partial withdrawal
determines a liquidity risk; it is difficult to match the liabilities with appropriate
assets, as there is uncertainty on the timing of the former, and so on. Further, a con-
siderable transparency in respect of the information provided to the policyholder is
required. On the other hand, the product could be very attractive. The insurer can
try to gain the loyalty of the policyholder designing an insurance package, providing
capital protection and other insurance benefits during the working life of the insured,
and then pension benefits after retirement. This idea is in particular realized by the
variable annuities policies, which we describe in the next section.

Health insurance benefits can also be included in the UL policy: accident insur-
ance, disability benefits, hospitalization benefits, and so on. Thus, the UL policy can
be shaped as a package of insurance covers. See Fig. 7.11.

Expenses
(initial 
and 
periodic) 

Natural 
premiums 
(death benefit, 
health covers, 
…) 

Withdrawals  

Interest / Change in value of policy assets 

Balance

Payments  
(premiums) 

RESERVE

Fig. 7.11 Structure of a universal life policy
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7.10 Variable Annuities

The term variable annuity is used to refer to a wide range of life insurance products,
whose benefits can be protected against investment and mortality/longevity risks
by selecting one or more guarantees out of a broad set of possible arrangements.
Originally developed for providing a post-retirement income with some degree of
flexibility, nowadays accumulation and death benefits constitute important compo-
nents of the product design. Indeed, the variable annuity can be shaped so as to offer
dynamic investment opportunities with some guarantees, protection in case of early
death and/or a post-retirement income.

The design of variable annuities matches features of unit-linked life insurance
contracts (the investment into a reference fund selected by the policyholder) to those
of participating contracts (the guarantees). Basically, the variable annuity is a fund-
linked insurance contract, including a package of financial options on the policy fund
value. Guarantees are then also looked at as riders to the basic benefit given by the
account value. Similarly to unit-linked policies, guarantees are explicit, and then the
policyholder who underwrites them is charged a fee.

As for participating or unit-linked contracts, financial options in variable annuities
are non-standard, as their exercise depends not just on economic factors, but also on
the lifetime of the insured or on preferences of the policyholder. Thus, their valuation
raises several complex issues; difficulties arise also in relation to the time-horizon,
which involves many years when post-retirement benefits are dealt with. Some issues
in this respect are discussed in Chap.8. In this section we only give a description of
the most common guarantees; as for participating and unit-linked policies, we do not
deal with their valuation.

Guarantees in variable annuitiesmaybefirst classified into twomainbroad classes:

• Guaranteed Minimum Death Benefit (GMDB);
• Guaranteed Minimum Living Benefit (GMLB).

The second class can be further arranged into three sub-classes:

• Guaranteed Minimum Accumulation Benefit (GMAB);
• Guaranteed Minimum Withdrawal Benefit (GMWB);
• Guaranteed Minimum Income Benefit (GMIB).

The acronym GMxB is used to briefly refer to the whole set of guarantees, i.e.,
Guaranteed Minimum Benefit of type ‘x’, where ‘x’ stands for the class of benefits
involved: accumulation (A), death (D), withdrawal (W) or income (I).

Variable annuities are generally issued with a single premium or single recurrent
premiums.The total amount of premiums is also named the principal of the contract or
the invested amount. Apart from some upfront costs, premiums are entirely invested
into the reference funds chosen by the policyholder. Similarly to unit-linked policies,
several investment opportunities are available to the customer, providing different
risk/return profiles. The policyholder is allowed to switch from one risk/return solu-
tion to another at no cost, if some constraints are fulfilled (for example, the switch is

http://dx.doi.org/10.1007/978-3-319-21377-4_8
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required no more than once a year). Unlike in unit-linked, with profit or participat-
ing policies, reference funds backing variable annuities are not required to replicate
the guarantees selected by the policyholder, as these are hedged by specific assets.
Therefore, reference fund managers have more flexibility in catching investment
opportunities.

Guarantees and asset management fees, administrative costs and other expenses
are charged year by year to the contract through a reduction of the policy account
value. This improves the transparency of the contract, as any deduction to the policy
account value must be reported to the policyholder; this follows the tradition of
Universal Life policies (see Sect. 7.9). Some guarantees can be added or removed,
at policyholder’s discretion, when the contract is already in-force. Accordingly, the
corresponding fees start or stop being charged. The cost of guarantees, aswell as other
expenses, are typically expressed as a given percentage of the policy account value.
In particular when relating to mortality or longevity guarantees, applying a constant
percentage may result in some approximations of the real cost. If the sum at risk
is positive, such an approximation is usually negligible, as we have commented for
unit-linked policies (see Sect. 7.4.2); conversely, when income benefits (i.e., annuity-
like benefits) are involved, and then the sum at risk is negative, major costs may
emerge from such approximations, in particular due to the extent of the time-horizon
involved. See Sect. 8.6 for some remarks in this regard.

In what follows, we describe the main guarantees, referring to a single premium
arrangement. The following notation is adopted:

Π the single premium;
Ft the account value at time t ;
G[x]

t the amount guaranteed at time t according to the guarantee of type x;
B[x]

t a lump sum benefit amount;
b[x] an annuity-like annual benefit amount.

The Guaranteed Minimum Accumulation Benefit (GMAB) is usually available
prior to retirement. At some specified date, the insured (if alive) is credited the
greater between the policy account value and a guaranteed amount. Assume that the
specified date is the retirement time, r ; then, such a guaranteed amount can be stated
as follows.

• The amount of premiums paid, net of withdrawals (the so-called return of pre-
miums); in the case of single premium and no withdrawal, we have, in formal
terms:

G[A]
r = Π (7.10.1)

• The roll-up of premiums, net of withdrawals, at a specified guaranteed interest
rate:

G[A]
r = Π (1 + i)r (7.10.2)

• The highest account value recorded at some specified times, prior to thematurity of
the GMAB; this is a ratchet guarantee, which locks-in the positive performances

http://dx.doi.org/10.1007/978-3-319-21377-4_8
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of the reference fund; assuming that the maturity coincides with the retirement
time r , we have:

G[A]
r = max

th<r
{Fth } (7.10.3)

where th , h = 1, 2, . . . are stated times.

We note that the guaranteed amount can be either fixed (return of premiums and
roll-up) or depending on the account value (ratchet).

In principle, guarantees can be combined; for example:

• roll-up & ratchet guarantee:

G[A]
r = max

{
Π (1 + i)r , max

th<r
{Fth }

}
(7.10.4)

As a result of the guaranteemechanism, the amount acknowledged at time r , B[A]
r ,

is defined as follows:
B[A]

r = max{Fr , G[A]
r } (7.10.5)

See Fig. 7.12 for a graphical representation of the main guarantees; we recall that,
to make clearer the presentation, a single premium has been considered and it has
been assumed that no withdrawals occur. A further guarantee which may be attached
to the GMAB is the reset, which gives the opportunity to renew the GMAB when it
reaches maturity.

Similarly to the GMAB, also the Guaranteed Minimum Death Benefit (GMDB)
is available during the accumulation period; some insurers are willing to provide
a GMDB also after retirement, up to some maximum age (say, 75 years). The

Fig. 7.12 Possible choices
for the GMAB and the
GMDB; single premium (no
withdrawal)

time

return

roll-up

policy fund

ratchet
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guaranteed amount G[D]
t can be defined according to formulae similar to those

adopted for the GMAB, that is:

• return of premium
G[D]

t = Π (7.10.6)

• roll-up guarantee
G[D]

t = Π (1 + i)t (7.10.7)

• ratchet guarantee
G[D]

t = max
th<t

{Fth } (7.10.8)

where th , h = 1, 2, . . . are stated times.

Further, the following guarantee can be available:

• the account value at some prior specified date, the so-called reset date

G[D]
t = Fmax{t j : t j <t} (7.10.9)

where t j , i = 1, 2, . . . are the stated reset dates. This is the reset guarantee
(whose meaning is different within the GMAB and GMDB; indeed, a reset option
in the GMAB simply allows to postpone the maturity date). In the case of single
recurrent premiums, the total amount of premiums paid following the reset date
must be added to G[D]

t , net of possible withdrawals.

We note that, also in the GMDB, the guaranteed amount can be either fixed (return
of premiums and roll-up) or depending on the account value (ratchet and reset). We
also note that the difference between the ratchet and the reset guarantee within the
GMDB stands in the behavior of the guaranteed minimum amount: in the ratchet
guarantee the minimum amount never decreases, whilst a reduction may occur in the
reset, if the account value decreases between two reset dates.

The structure of the guaranteed benefit is similar to the GMAB: in case of death
prior to the stated maturity, the insurer will pay the greater between the account value
and a stated amount, that is:

B[D]
t = max{Ft , G[D]

t } (7.10.10)

Figure7.12 also represents the main GMDB guarantees.
The Guaranteed Minimum Income Benefit (GMIB) provides a lifetime annuity

from a specified future point in time, typically from retirement time r . The guarantee
may be arranged in two different ways.

• The amount to be annuitized (namely, the amount to be converted into a life
annuity) will be the greater between the account value and a specified amount.

The annuitization rate,
1

ä[curr]
x+r

(that is, the ratio between the annual income and
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the annuitized amount, also called the conversion coefficient), will be defined
according to market conditions prevailing at the annuitization date. In formal
terms:

b[I] = 1

ä[curr]
x+r

max{Fr , G[I]
r } (7.10.11)

where G[I]
r can be defined as G[A]

r (see Eqs. (7.10.1)–(7.10.3)).
• The annuitization rate will be the more favorable between a stated rate and what
resulting fromcurrent conditions. The annuitized amountwill be the account value.
In formal terms:

b[I] = Fr max

{
1

ä[curr]
x+r

,
1

ä[guar]
x+r

}
(7.10.12)

where the value ä[guar]
x+r is stated before time r , in particular at the date the policy

is issued.

The former guarantee is sometimes described as a guarantee on the annual amount,
which would suggest an arrangement similar to a traditional deferred life annuity;
it is then worthwhile to stress that the guarantee actually concerns the amount to be
annuitized, as described above, and not the annuity benefit.

In principle, the two guarantees can be combined, with the following result.

• Guarantee on the amount & annuitization rate; then:

b[I] = max{Fr , G[I]
r } × max

{
1

ä[curr]
x+r

,
1

ä[guar]
x+r

}
(7.10.13)

In practice, the resulting product would be very expensive, because of the huge risk
taken by the insurer.

Remark It is worth quoting here a terminology prevailing in the life annuity markets. Although
it is not commonly used for variable annuities, it may help in better understanding the features of
the GMIB.
An annuitization rate defined according to current market conditions is named current annuitization
rate (CAR); see 1

ä[curr]
x+r

in Eqs. (7.10.11)–(7.10.13). Under a CAR, the annual amount is guaranteed

after annuitization (given that the CAR essentially expresses the price of an immediate life annuity),
but not prior to this time. Conversely, a guaranteed annuitization rate (GAR) is stated prior to
annuitization, in particular at policy issue; see 1

ä[guar]
x+r

in Eqs. (7.10.12) and (7.10.13). A policyholder

entitled to a GAR usually has the possibility to choose, at annuitization, the best rate between the
CAR and the GAR; this possibility is referred to as a Guaranteed Annuitization Option (GAO). See
also Sect. 8.6.
Referring such terminology to the GMIB, we would say that the GMIB can consists in:

• a guarantee on the amount to be annuitized (while a CAR is adopted for the annuitization);
• a GAO (while the amount to be annuitized is not guaranteed).

As already mentioned, it is possible to underwrite both a guarantee on the amount to be annuitized
and a GAO, but this would be very expensive for the policyholder (as the insurer would be exposed
to major risks).

http://dx.doi.org/10.1007/978-3-319-21377-4_8
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If the GMIB is exercised, after annuitization the policyholder loses access to the
account value (while prior to annuitization the contract works like an investment
product, bearing some guarantees). The guarantee must be selected by the policy-
holder some years before annuitization; typically, the GMIB may be exercised after
a waiting period of 5–10 years. The cost of the GMIB is deducted from the account
value during the accumulation period. If prior to annuitization the policyholder gives
up the guarantee, the insurer stops charging the relevant fee. Typically, full annuiti-
zation is required; however, partial annuitization is admitted in some arrangements.

As far as the duration of the annuity is concerned, the following solutions may be
available:

• a traditional life annuity;
• a last-survivor annuity;
• a life annuity with a minimum number of payments, i.e., with a guarantee period
(say, up to 5 or 10 years).

Money-back (or capital protection) arrangements may also be available, providing a
death benefit consisting of the residual principal amount, i.e., the annuitized amount
net of the annual payments already cashed.More details on the above annuity features
will be provided in Sect. 8.5.2.

The annual amount of the annuity may be:

1. fixed (either flat or fixed-rate escalating);
2. participating;
3. inflation-linked;
4. linked to stock prices.

See also Sect. 4.3.3. A financial risk is borne by the annuitant in case 4, as the annual
amount can fluctuate in time (conversely, in a participating scheme the annual amount
never decreases; see Sects. 7.3 and 7.4).

The Guaranteed Minimum Withdrawal Benefit (GMWB) guarantees periodical
withdrawals from the policy account, even if the account value reduces to zero (either
because of bad investment performances or long lifetime of the insured). See Fig. 7.13
for a graphical representation.

The guarantee concerns the annual payment and the duration of the income stream.
The annual payment, b[W]

t , is stated as a given percentage, βt (in particular βt =
constant, for example 5%), of a base amount Wt :

b[W]
t = βt Wt (7.10.14)

The base amount is usually the account value at the date t∗ the GMWB is selected.
In this case:

b[W]
t = βt Ft∗ (7.10.15)

In particular, if the guarantee is selected at the policy issue, t∗ = 0 and then:

b[W]
t = βt Π (7.10.16)

http://dx.doi.org/10.1007/978-3-319-21377-4_8
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time

guaranteed fund

policy fund

Fig. 7.13 Fund available under a GMWB; guaranteed annual withdrawal: 5% of the initial fund,
for 20 years

In some arrangements, at specified dates (e.g., every policy anniversary) the base
amount may step up to the current value of the policy account, if this is higher; this is
a ratchet guarantee, which may be lifetime or limited to some years (e.g., 10 years).
According to the ratchet mechanism, we have:

b[W]
t = βt Wt = βt max{Ft∗ , Ft } (7.10.17)

Note that, thanks to the ratchet, the guaranteed annual payment may increase in
time; in some arrangements, a maximum accepted annual increase is stated in policy
conditions.

The guaranteed annual payment may be alternatively meant as the exact, the
maximum or the minimum amount that the policyholder is allowed to withdraw in
each year. In the last case, any withdrawal above the guaranteed level reduces the
base amount.

The duration of the withdrawals may be:

1. fixed (e.g., 20 years);
2. fixed provided that the retiree is alive;
3. lifelong.

In cases 1 and 2, if at maturity the account value is positive, it is paid back to
the policyholder or his/her estate, or, alternatively, the contract stays in-force until
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exhaustion of the policy account value. The cost of the guarantee is charged to the
account value during the payment period; if the policyholder gives up the guarantee,
the relevant fee stops being applied. During the withdrawal period, the policyholder
keeps access to the unit-linked fund; if at death the account value is positive, such
an amount is paid to the estate of the policyholder.

From the descriptions above, it emerges that GMAB and GMDB are similar to
what can be found in participating and unit-linked arrangements, apart from the pos-
sible range of guarantees, which is wider in variable annuities than in traditional
contracts and is explicit. The GMIB is like a traditional life annuity, possibly partic-
ipating. The GMWB is the real novelty of variable annuities in respect of traditional
life insurance contracts; it provides a benefit which is similar to an income draw-
down, but with guarantees (see Sect. 8.5.3 formore details on the income drawdown).
When comparing a GMIB to a GMWB, three major differences arise:

• the duration of the annuity (which is lifetime in the GMIB);
• the accessibility to the account value (just for the GMWB);
• the features of the reference fund (which is unit-linked in the GMWB, but typically
participating in the GMIB).

Clearly, the presence of death benefits also in the GMIB, a lifetime duration for the
withdrawals in the GMWB and other possible features reduce a lot the differences
between the GMIB and the GMWB. Apart from the use of one name or the other,
policy conditions should reveal the real features of the income provided by the
contract.

7.11 References and Suggestions for Further Reading

Technical literature on insurance benefits linked to the investment performance is
very extensive. Here, we just mention the textbooks dealing with this topic.

A description of the early forms of policies realizing several form of flexibility
and linking to the investment performance is given by Delvaux and Magnée (1991).

Many authors have addressed the valuation of financial options embedded in insur-
ance benefits. Market-valuation methods for the valuation of participating policies
are described in Möller and Steffensen (2007).

Unit-linked policies, and possible approaches to the valuation of the relevant
financial options, are dealt with by Hardy (2003), Dickson et al. (2013), Koller
(2012).

A description of with-profit policies can be found in Booth et al. (2005), while
for Universal Life reference can be made to Black and Skipper (2000).

An introduction to variable annuities can be found in Milevsky (2006), while a
more detailed presentation is provided by Kalberer and Ravindran (2009).
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Chapter 8
Pension Plans: Technical and Financial
Perspectives

8.1 Introduction

In this chapter, we examine some features of private pension programmes, namely
those arrangements providing a post-retirement income in addition to the public
pension. Aswewill see, a private pension plan can be designed either on an individual
or a group basis. Although in the modern forms the funding of benefits is always
realized on individual basis, group pension plans allow for a funding arrangement
based on solidarity principles. The post-retirement income is the basic benefit of a
pension plan; however, several rider benefits can be underwritten, covering risks to
which an individual is exposed either before or after retirement.

It is worth anticipating some of the common terminology adopted when referring
to pension plans; further terms will be introduced later on.

• The lifetime of an individual is split into two economic periods: the period before
retirement, the so-called savings period (or working period) and the period after
retirement, the so-called post-retirement period (or simply retirement period); see
also Sect. 1.2.5.

• An individual joining a pension plan is referred to as a member. The member is
active during his/her working life, and retired after retirement.

• Similarly to life insurance, benefits must be funded by appropriate payments (the
premiums, in life insurance). Such payments are called contributions.

• The institution arranging a private pension plan is generically referred to as the
provider. As we will see, it can be an insurer, another financial institution or a
specific institution set up for this purpose.

• The pension income is considered to be the main benefit of a private pension plan.
Further benefits can be underwritten, which are looked at as riders. In the context
of pension plans, they are referred to as ancillary benefits.

© Springer International Publishing Switzerland 2015
A. Olivieri and E. Pitacco, Introduction to Insurance Mathematics,
EAA Series, DOI 10.1007/978-3-319-21377-4_8

417

http://dx.doi.org/10.1007/978-3-319-21377-4_1


418 8 Pension Plans: Technical and Financial Perspectives

In detail, the main issues dealt with in this chapter are the following:

• possible technical designs of private pension plans, in particular with reference to
the definition of benefits and the relevant funding principles;

• the accumulation of savings for pension purposes, and the risks to which an indi-
vidual is exposed before retirement;

• solutions for the post-retirement income available to an individual, and relevant
risks;

• risks borne by the provider, depending on the benefits provided before and after
retirement.

We point out that the topic discussed in this chapter is very wide, and a thorough
presentation is not possible here. Basically, in this chapter we aim at carrying forward
the discussion started in Sect. 1.2.5 concerning possible solutions for the provision
of a post-retirement income.

8.2 Pension Programmes

We refer the term pension programme (or pension plan) to any arrangement aimed
at providing a post-retirement income. Pension plans may be classified according to
the number of individuals they cover, the rule linking benefits to contributions and
the timing of payment of contributions.

8.2.1 Individual and Group Pension Plans

Referring to the number of individuals which are covered by the pension plan, we
identify individual (or single-member) plans and group pension plans.

An individual pension plan is similar to a life insurance contract, although the
legal form of the contract may be other than that. The provider can be an insurer or
another financial institution with a specific license for dealing with pension benefits.
The individual pays contributions during his/herworking life, and receives an income
after retirement. Several benefits can be underwritten as riders to the post-retirement
income, such as a death benefit during the savings period and in the first years (say,
5–10years) after retirement, sickness insurancebenefits, and soon; see alsoSect. 8.5.2.
Individual contributions must be on balance with the benefits underwritten by the
individual; the way this balance is realized depends on the risks that are transferred to
the provider; we comment on this in Sects. 8.2.2 and 8.3. Asmentioned in Sect. 1.2.5,
the savings period is also called accumulation phase, while the post-retirement period
is also called decumulation phase. These terms follow the idea that during his/her
working life the individual saves money, to be used after retirement.

A group pension plan covers a number of individuals who share some common
features as regards their occupation. Usually, they either work for the same employer,

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1


8.2 Pension Programmes 419

or in the same economic sector, or are self-employed for the same profession, and so
on. Joining or not the pension plan is an individual decision, unless current legisla-
tion states otherwise. The employer is referred to as the sponsor of the pension plan.
The plan may be managed directly by the sponsor; in this case, the sponsor typically
underwrites some insurance contract, typically a group insurance or some other spe-
cific agreement with an insurer, to transfer at least partially its risks.More commonly,
a specific institution is set up for managing the liabilities of the pension plan, the
so-called pension fund. Similarly to the case of individual pension plans, also in the
case of group pension plans individuals pay contributions during their working life
and receive an income after retirement; some ancillary benefits can be underwritten,
typically concerning the event of early death. The balance between contributions and
benefits can be realized on an individual basis (similarly to an individual pension
plan) or for the whole group. This latter solution implies solidarity effects, as we
explain in Sect. 8.2.2. Contributions may be paid also by the sponsor, as an indirect
(and deferred) form of salary to its employees.

Social security plans (or state pension plans) represent an “extreme” example of
group pension plan, as they cover the whole population of a country. Joining a social
security plan is not a choice; in particular, it is compulsory to pay contributions to
the social security plan. The balance between contributions and benefits is realized
on a group basis: the contributions paid currently by active people are used to fund
the benefits currently paid to retired people. As opposed to social security plans,
individual and group pension plans are considered private pension plans. In this
chapter, we only address this type of plans.

Remark According to legislation, it may be compulsory to join some private pension plan, in
addition to the social security plan. In particular, this is imposed when the public pension is set at
minimum levels, not adequate to ensure to each citizen living standards in line with those during
his/her working life. In a welfare economy, the State Government has to guarantee an adequate
income to any retired citizen; if the benefit paid by the social security is kept low, the compulsory
membership to some private pension plan ensures that in the future unexpected costs will not be
originated by individuals not getting in total an adequate income (apart from a possible default of
the provider). This is the idea of what is called a three-pillar pension system, namely a pension
system arranged on the social security plan (the first pillar), group pension plans (the second pillar)
and individual pension plans (the third pillar). The pension legislation contributes to define the
importance of each pillar. The second and third pillars are the private pension solutions. Usually,
the third pillar is not compulsory, while joining the second pillar can be mandatory (for the reasons
quoted above). Nevertheless, if it is mandatory to join some pension plan and the individual is not
satisfied with the performance of the pension fund supported by his/her sponsor, he/she has the
possibility to join some other private plan (possibly, an individual one). In the following, we do not
take care of the constraints imposed by legislation on the membership to a private pension plan; we
just discuss some technical issues of private arrangements.

A fourth pillar is sometimes referred to, the so-called phased retirement or partial retirement.
An individual may decide, at the normal retirement age, to continue to carry on a working activity,
but at a slower pace (either taking a part-time position or a lighter job). In this case, he/she (usually)
will receive in total the public pension, but just partially the private pension. The advantage stays in
the flexibility gained in respect of the amount accumulated within the private pension plan which
has not yet been converted into a post-retirement income. Further remarks in this regard are given
in Sect. 8.5.4.
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8.2.2 Benefits and Contributions

As noted in Sect. 8.2.1, a balance must be realized between contributions and bene-
fits. In particular, each plan must adopt specific rules for the calculation of benefits
and contributions. In the following, we refer to the pension benefit only (while we
disregard ancillary benefits).

A major distinction exists between defined contribution and defined benefit pen-
sion plans.

In a defined benefit (DB) pension plan, a rule is given for the definition of the
benefit, i.e., the post-retirement pension. It can be a fixed annual amount or, more
commonly, a proportion of the member’s salary prior to retirement. The proportion
depends on the number of working years; the salary prior to retirement can be the
salary received in the last year prior to retirement or an average of the salary received
in a given number of years prior to retirement. The contributions are then calculated
so that they are on balance with the specified benefits.

If the balance between contributions and benefits is realized on a individual basis,
from a technical point we have to solve an equation similar to (5.2.1) when the mem-
ber joins the plan; after the initial time, the balance is expressed similarly to (5.3.1).
Indeed, the arrangement works like a life insurance contract with fixed benefits. Let
0 be the time when the individual joins the pension plan, and r the retirement time. In
principle, the actuarial balance between contributions and benefits must be assessed
at time 0, as follows

Prem(0, r) = Ben(0,+∞) (8.2.1)

where, similarly to life insurance, the quantity Prem(0, r) represents the expected
present value at time 0 of the contributions of the individual in the time-interval (0, r),
while Ben(0,+∞) represents the expected present value at time 0 of the benefits
which will be paid to the individual (starting from time r and until member’s death,
given that we are only addressing the pension benefit). Appropriate assumptions are
required for the assessment (8.2.1). In particular, an interest rate must be chosen to
discount future contributions and future benefits. To understand the other assump-
tions, we first note that Ben(0,+∞) corresponds to the actuarial value at time 0 of a
life annuity (with fixed benefits) commencing at time r if the individual is alive and
still a member of the plan at that time. During the time-interval (0, r) it may happen
that the individual moves to another plan (e.g. because he/she changes employment),
while after retirement he/she remains a member of the plan, until death. Then we
note that contributions are paid in (0, r) if the individual is alive, still belongs to the
plan and still receives a salary. Due to a disability, it is possible that the individual is
unable to perform the usual work, which inhibits his/her from receiving the salary,
and then paying the contribution.

Summarizing, apart from the choice of the discount rate, to assess (8.2.1) assump-
tions are required in respect of the lifetime of the individual, the probability that
he/she remains a member of the plan and the probability that he/she receives a salary
without discontinuances. Contributions resulting from all these assumptions should

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
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not be changed after time 0, similarly to what happens in life insurance. Several risks
emerge for the provider, in particular due to the extent of the time-horizon, whichmay
make difficult to take appropriate assumptions. In practice, the rules of the pension
plan may state that assumptions could be updated, if this is required by the evolving
economic and demographic scenario; this usually results in an update of contribu-
tions (and thus some risks are charged to the member). We finally note that (8.2.1)
implies the accumulation of a fund in the interval (0, r), to be used after retirement
for paying out the defined pension benefit. So, at time t , t = 0, 1, . . . , r − 1, the
following balance must be fulfilled

Prem(t, r) + Vt = Ben(t,+∞) (8.2.2)

while at time t , t = r, r + 1, . . .

Vt = Ben(t,+∞). (8.2.3)

In both cases, Vt represents the individual fund, whose management is similar to
that of a reserve in life insurance (which explains the notation we have adopted).
Note that, if the plan’s rules allow for this, the cost of an update to the valuation
assumptions can be charged to the member just in the time-interval (0, r), as no
contribution is paid following time r .

If the balance between contributions and benefits is realized on a group basis, the
following condition must be satisfied:

Prem[P](t, t + T ) + V [P]
t = Ben[P](t, t + T ) (8.2.4)

where t is the current time, T is a given time-horizon (namely, the time-horizon
in respect of which, according to the plan’s rules, the balance between benefits and
contributions must be realized), V [P]

t is the total amount of assets hold by the pension
fund at time t , Prem[P](t, t + T ) is the present value at time t of the contributions
which are expected to be received in the time-interval (t, t + T ) by the pension plan,
and Ben[P](t, t + T ) is the present value at time t of the benefits which are expected
to be paid by the pension plan in the time-interval (t, t +T ). Besides the assumptions
already mentioned for the balance (8.2.1), condition (8.2.4) requires assumptions on
the number of members paying contributions in the time-interval (t, t + T ), as well
as on the number of those who cash benefits in the same time-interval. In particular,
as active members reference can bemade just to those who are within the plan at time
t , or alternatively also to those who will join the plan in the period (t, t + T ). It must
be noted that V [P]

t refers to the whole group; in general, it is not possible to split this
amount into individual funds. Indeed, when the balance between contributions and
benefits is realized on a group basis, it is not clear what contributions are meeting
the cost of the benefits of a given individual. To understand better, we can consider
that while condition (8.2.1) always implies the accumulation of the individual con-
tributions, the balance (8.2.4) could be realized also with V [P]

t = 0 at any time t ; in
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this case, the benefits currently paid to the retired members would be funded by the
contributions currently paid by the active members (as it typically happens in social
security plans). In other words, the implementation of (8.2.4) involves solidarity
effects. We further note that (8.2.4) usually implies less guarantees than (8.2.1). For
example, it is natural that the provider updates the valuation assumptions from one
year to the other, in particular because the composition of the group is changing in
time; the cost of the update is spread over the contributions, so that it is charged to
the active members.

We now address defined contribution (DC) pension plans. In this case, a rule is
given for the calculation of the contributions. The simplest choice is to set a fixed
annual amount for each member, but more often the annual individual contribution is
a proportion of the member’s salary. Contributions are accumulated in an individual
account, which is used at retirement to obtain a pension income. No guarantee is
naturally implied before retirement, unless ancillary benefits have been underwritten;
after retirement, a guarantee is provided if the benefit consists of an immediate life
annuity. Other choices are possible, as we discuss in more detail in Sect. 8.5. We will
come back on the possible guarantees prior and after retirement in Sect. 8.3.

As suggested by the descriptions above, DB pension plans imply several risks for
the provider. Conversely, a DC pension plan does not necessarily imply guarantees;
the advantage for the member is a greater flexibility, in respect both of investment
choices and the type of post-retirement income.

In recent times, DC pension plans have becomemore popular than DB plans. This
is due, in particular, to the fact that the former allow for more flexibility in favor of
the member, while reducing risks for the provider. Further, nowadays the member is
commonly allowed to move from a plan to another (although some constraints may
apply). Thus, plans based on funding arrangements implying solidarity effects, as DB
plans do, become unsustainable. In the following we only address DC arrangements.

8.2.3 Timing of the Funding

It is clear that an individual pays contributions while he/she is an active member of
the pension plan, and receives an income while he/she is retired. The payment of
contributions may be interrupted in face of specific events (such as a disability that
prevents the usual working activity), and some rider benefits may come into payment
during the working period. In the following, for simplicity we refer to the pension
benefit only and we disregard discontinuances in the payment of contributions.

If we take the point of view of the provider, at any time contributions are being
received from the active members and benefits are being paid to the retired members.
Depending on the rule linking contributions to benefits, as well as on the principle
adopted for the balance between contributions and benefits, there can be an accumu-
lation of assets.
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A funded pension plan is an arrangement in which contributions are accumulated
into a fund. If the balance between contributions and benefits is realized on an indi-
vidual basis, each member is assigned a specific fund. An important issue concerns
how the fund is invested, as well as who is bearing the investment risk.

In an unfunded pension plan (or pay-as-you-go pension plan) benefits currently
paid are met by the contributions currently received by the provider. In this case,
the balance between contributions and benefits is realized on a group basis. No fund
is accumulated. An intermediate solution, adopted by some social security plans,
consists in using the contributions currently paid by the active members to fund
the amount backing the liability of the provider in respect of the members who
are currently retiring; no fund is accumulated during the working period, while a
fund (namely, the reserve of an immediate life annuity) is set up at retirement, and
maintained up to death.

As we have already mentioned, unfunded plans are of interest just for social
security plans, so that we no further address them. In the following, we just consider
funded plans realizing an individual balance between benefits and contributions.

8.3 Transferring Risks to the Provider

In this section, we summarize the risks that an individual, who is planning his/her
post-retirement income, can transfer to the provider. We will come back in more
detail to some of the issues introduced here in the following sections.

We refer to a pension plan in which an individual saves money during his/her
working life, in the form of contributions which are credited to his/her own personal
fund. At retirement, the accumulated fund is used to receive a pension income. This
can be realized within an individual or a group pension plan. As stated in Sect. 8.2.2,
we only refer to DC pension plans. In this case, only an individual balance can
be realized between contributions and benefits. From a technical point of view, the
specific form of the pension plan (either individual or group) does not matter in this
case; for brevity, we then refer only to individual pension plans.

In a DC pension plan, the working and the post-retirement period are addressed
separately when defining the benefits. During the working period, the money is accu-
mulated in the individual fund; the investment risk is naturally borne by the member.
The advantage consists in the possibility for the member to select the asset compo-
sition he/she prefers, in particular in terms of risk/return profile (see also Sect. 8.4).
Financial guarantees may be underwritten, so to transfer part of the financial risk
to the provider; a fee is usually required. The availability of guarantees depends on
who is the provider; insurers offer financial guarantees on their pension products
(similarly to those examined in Chap.7 for participating, unit-linked and variable
annuity policies), while a group pension plan usually does not.

Ancillary benefits available during theworkingperiod are death benefits, disability
benefits and other health insurance benefits. The death benefit can either be a lump
sum benefit (a fixed amount or a multiple of the pensionable salary at death), or a

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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pension in favor of the member’s spouse. Death benefits can also take the form of
a financial guarantee, similarly to what available within a unit-linked or a variable
annuity product. These latter benefits are usually offered by an insurer, while a lump
sum or a pension to the spouse are offered by any pension fund. Disability benefits
may consist in the possibility to interrupt the payment of contributions in the case of
a disability, or may be given by a disability income replacing the salary if the member
is unable to work because of sickness or injury. Health insurance benefits are offered
by insurers, or by a sponsor getting protection by an insurer. A fee is required for the
ancillary benefits, whose cost is assessed counting on the possibility for the provider
to realize mutuality effects. Risks originated by mutuality are borne by the provider.
Withdrawals prior to retirement are allowed just in face of specific events (such as
the purchase of a house, the wedding of a child, a critical illness requiring special
medical care, the change of the pension plan in face of a new employment, and so on).

At retirement, the member has to select the form of the pension income. In some
cases, it is possible to cash the accumulated amount. The member can simply plan
a sequence of withdrawals from his/her account, as long as money is left. This is
the so-called income drawdown (see Sect. 8.5.3). The investment risk and the risk
connected to his/her longevity (see Sects. 1.2.5 and 8.5.3) are borne by the individual.
The advantage is that he/she has access to his/her fund, in particular for the selection
of the asset composition; further, in the case of early death the residual fund belongs to
his/her estate. Alternatively, the individual fund at retirement can be annuitized, i.e.,
converted into a life annuity. All risks are transferred to the provider, in particular
the longevity risk, with the disadvantage of loosing access to the individual fund
(for example, in the case of early death the residual fund is used by the insurer
for mutuality purposes). Intermediate solutions are possible; the fund at retirement
can be partially annuitized. The advantage is to get some guarantees from the life
annuity, while keeping some flexibility on the fund not annuitized. See Sect. 8.5.3
for more details. Ancillary benefits during retirement are typically death benefits,
and can be obtained in respect of the fund which has been annuitized. In particular,
the death benefit is implied by the type of life annuity selected by the individual (see
Sect. 8.5.2). We mention the benefit provided by a capital protection, under which
at death the estate receive the difference between the fund annuitized at retirement
and the total income received by the annuitant up to death, and the pension in favor
of the member’s spouse, the so-called last-survivor annuity. Death benefits similar
to those packaged in a variable annuity product can also be available, typically for
some years after retirement (see Sect. 7.10). The funding of a death benefit is based
on mutuality, similarly to what examined for life insurance products; the relevant
risk is charged to the provider. However, we note that the death benefit mitigates
the longevity risk taken by the provider; see also Sect. 8.6. The disadvantage for the
individual of a death benefit taken as a rider to a life annuity is the cost: given the
fund to be annuitized, the annual amount available if a rider benefit is underwritten
is lower than in the case of a standard life annuity.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_7
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8.4 Pension Savings Before Retirement

Aswehavementioned inSect. 8.3, during the accumulation period the investment risk
is naturally borne by the individual. It is then desirable that the individual has some
control over the investment of his/her fund. In principle, the member can select the
asset composition more suitable to his/her preferences in terms of risk/return profile.
It often happens that members do not have the required expertise for selecting appro-
priately the investment, so that the provider gives advice; in particular, it prearranges
some lines of investment, which are characterized by different risk/return profiles.
What is usually recommended is a lifestyle investment strategy. While young, the
member should try to maximize the investment return by including in the assets an
appropriate proportion of stocks. When approaching retirement time, a defensive
strategy is preferable, and thus the investment should consists mainly of bonds. The
shift from the former to the latter asset composition should be clearly progressive in
time.

Several guarantees may protect the investment, but this typically requires the
payment of a fee. Underwriting a guarantee corresponds to underwriting a financial
option, as mentioned in Sects. 7.5 and 7.10. Since the guarantees imply a risk for
the provider, some constraints may then be imposed on the asset composition. More
often, the guarantees are hedged with appropriate assets, as we have commented for
variable annuities.

8.5 Arranging the Post-retirement Income

Asmentioned in Sect. 8.3, at retirement time the individual can usually choose among
several alternatives to obtain the post-retirement income. Immediate life annuities
and income drawdown constitute typical solutions. “Mixtures” of life annuities and
income drawdown also provide practicable solutions.

Life annuities have been described in Sect. 4.3.3. In this section we first turn again
on this insurance product, looking at the life annuity as a (possible) element in post-
retirement income arrangements. Then, alternatives to the life annuity are examined.
In what follows, we just refer to the net cost of benefits, i.e., we disregard expenses.

8.5.1 Some Basic Features of Life Annuities

When planning the post-retirement income, some basic features of the life annu-
ity product should be carefully accounted for. In particular, we note the following
aspects.

1. The life annuity product relies on the mutuality mechanism, like the pure endow-
ment insurance (see Sect. 1.7.4, and Fig. 1.24 in particular). This means that:

http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1


426 8 Pension Plans: Technical and Financial Perspectives

a. the amounts released by the deceased annuitants are shared among the annu-
itants who are still alive;

b. on the annuitant’s death, his/her estate is not credited with any amount, and
hence no bequest is available.

2. A life annuity provides the annuitantswith an “inflexible” post-retirement income,
in the sense that the annual amounts must be in line with the payment profile, as
stated by the policy conditions.

3. Purchasing a life annuity is an irreversible decision: surrendering is generally not
allowed to the annuitants.

Because of features 2 and 3, a life annuity can be classified as an illiquid asset in
the annuitant’s portfolio. Further, features 1b, 2 and 3 can be perceived as disadvan-
tages, and hence weaken the propensity to immediately annuitize the whole amount
available at retirement. We now illustrate how these disadvantages can be mitigated,
at least to some extent, either by purchasing life insurance products in which other
benefits are packaged, or adopting a specific annuitization strategy.

8.5.2 Packaging Benefits into the Life Annuity Product

If the annuitant dies soon after the (standard) life annuity commencement, neither
the annuitant nor the annuitant’s estate receive much benefit from the purchase of
the life annuity. In order to mitigate this risk, it is possible to buy a life annuity with
a guarantee period (5 or 10years, say), in which case the benefit is paid for the
guarantee period regardless of whether the annuitant is alive or not. The actuarial
value, at the retirement age y and according to interest rate i ′, of a life annuity with a
guarantee period of s years and a unitary benefit, is given, according to the traditional
notation, by:

a′
y: s� = a′

s� + s|a′
y . (8.5.1)

Thus, the annuity product results in a deferred life annuity combinedwith a temporary
annuity-certain. Of course, a′

s� > a′
y: s�, and then:

a′
y: s� > a′

y: s� + s|a′
y = a′

y . (8.5.2)

The single premium which is charged to purchase a life annuity with a guarantee
period of s years and benefit b is then given by:

Π = b a′
y: s�. (8.5.3)

Example 8.5.1 Table8.1 shows the single premium Π , given by Eq. (8.5.3) at age
65 and 70 respectively at policy issue; of course, s = 0 denotes the standard life
annuity without guarantee period. The technical basis is TB1 = (0.02,LT4). It is
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Table 8.1 Single premium Π at age y; b = 100

Guarantee period

s = 0 s = 5 s = 10

y = 65 1 706.88 1 716.25 1 746.67

y = 70 1 426.43 1 443.47 1 497.53

worth noting the limited cost, in terms of increment in the single premium, moving
from a standard life annuity (s = 0) to a life annuity with a guarantee period of 5 or
10 years. Actually, the difference as� −ay:s� is very small thanks to the lowmortality
in the age interval involved, that is (y, y + s). ❑

Capital protection represents an interesting feature of some life annuity products,
usually called value-protected life annuities or money-back life annuities. Consider,
for example, a single-premium, level annuity purchased at age y. In the case of early
death of the annuitant, a value-protected life annuity will pay to the annuitant’s estate
the difference (if positive), Γh , between the single premium Π and the cumulated
benefits paid to the annuitant. Usually, capital protection expires at some given age
y + n = ξ (75, say), after which nothing is paid even if the difference mentioned
above is positive. Hence, we have:

Γh = max{Π − h b, 0}; h = 0, 1, . . . , n − 1. (8.5.4)

The single premium is then given by:

Π = ba′
y + (

Γ0 0|1A′
y + Γ1 1|1A′

y + · · · + Γn−1 n−1|1A′
y

)
. (8.5.5)

Example 8.5.2 Table8.2 shows the single premium Π , given by Eq. (8.5.5), which
is charged to purchase, at age 65 and 70 respectively, a value-protected life annuity
with limit age ξ. The technical basis is TB1 = (0.02,LT4). We note that, also
for this benefit, the increment in the single premium is rather small, even when the
protection expires at age ξ = 80. Again, this is due to the lowmortality in the relevant
age intervals. ❑

A last-survivor annuity is an annuity payable as long as at least one of two indi-
viduals (the annuitants), say (1) and (2), is alive. It can be stated that the annuity

Table 8.2 Single premium Π at age y; b = 100

Limit age

ξ = 70 ξ = 75 ξ = 80

y = 65 1 759.53 1 821.22 1 880.66

y = 70 1 426.43 1 506.13 1 593.50



428 8 Pension Plans: Technical and Financial Perspectives

continues with the same annual benefit, say b, until the death of the last survivor. A
modified form provides that the amount, initially set to b, will be reduced following
the first death: to b′ if individual (2) dies first, and to b′′ if individual (1) dies first,
clearly with b′ < b, b′′ < b. Conversely, in many pension plans the last-survivor
annuity provides that the annual benefit is reduced only if the retiree, say individual
(1), dies first. Formally, b′ = b (instead of b′ < b). Whatever the arrangement, the
expected duration of a last-survivor annuity is longer than that of a standard life
annuity (that is, with just one annuitant).

8.5.3 Life Annuities versus Income Drawdown

A temporary withdrawal (or drawdown) process can mitigate both disadvantages
1b and 2, mentioned in Sect. 8.5.1. Let S denote the amount available at retirement,
resulting from the accumulation process. Assume that the retiree, age y, can choose
between the two following alternatives:

1. to purchase an immediate life annuity, with annual benefit b, such that b a′
y = S,

namely to choose the immediate annuitization of the available amount;
2. to leave the amount S in a fund, and then:

a. withdraw the amount b(1) at times h = 1, 2, . . . , k (say, with k = 5 or
k = 10) (namely: the post-retirement income is obtained via a temporary
withdrawal process);

b. (provided he/she is alive) convert at time k the remaining amount R into an
immediate life annuity with annual benefit b(2).

Alternative 2 is commonly known as the delayed annuitization. See Fig. 8.1.
If the retiree chooses the second alternative, the amount R available at time k to

buy the life annuity depends on the annual withdrawal b(1) and the interest rate, g,
credited to the non-annuitized fund. If g = i ′, namely the interest rate assumed in
the pricing basis of the life annuity, and b(1) = b then, the amount R is not sufficient
to purchase a life annuity with annual benefit b(2) = b, because of the absence of
mutuality during the withdrawal period.

However, the absence of mutuality can be compensated (at least in principle)
by a higher investment yield, namely if g > i ′. We note the analogy between this
problem and the one we have addressed while dealing with the pure endowment (see
Sect. 4.3.2).

In formal terms, we can find relations among the quantities g, i ′, b, b(1), b(2), and
k. In the case a life annuity (in arrears) is purchased at retirement time, we obviously
have:

S = b a′
y . (8.5.6)

In the case of k-year delay, the amount R available at time k is given by:

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Fig. 8.1 Immediate annuitization versus delayed annuitization

R = S (1 + g)k − b(1)
k∑

h=1

(1 + g)k−h (8.5.7)

and the resulting annuity benefit b(2) fulfills the following equation:

R = b(2) a′
y+k (8.5.8)

in which it is assumed that the underlying technical basis coincides with the one
adopted in Eq. (8.5.6) (see below for comments on this aspect).

From Eqs. (8.5.7) and (8.5.8), we obtain:

S (1 + g)k − b(1)
k∑

h=1

(1 + g)k−h = b(2) a′
y+k . (8.5.9)

Several results can be obtained by using Eq. (8.5.9). For example, given S, i ′, b, k,
and

• given g and b(1) (e.g. b(1) = b), calculate b(2);
• given b(1) and b(2) (e.g. b(1) = b(2) = b), calculate the interest rate g.

Let g∗ denote the solution of Eq. (8.5.9). The spread g∗ − i ′ compensates the
mutuality effect (for a given delay k), and is often called the Implied Longevity Yield
(ILY )1; we note that g∗ corresponds to the rate gx,m defined in Sect. 4.3.2.

Example 8.5.3 Assume that the amount S = 1 706.88 is available at age y = 65.
Use the technical basis TB1 = (0.02,LT4). Hence, an immediate life annuity with

1Registered trademarks and property of CANNEX Financial Exchanges.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 8.3 Life annuity benefit b(2) after the delay period; b(1) = b; TB1 = (0.02,LT4)

k g = 0.02 g = 0.025 g = 0.03 g = 0.035

5 95.63 98.54 101.50 104.53

10 85.79 92.65 99.87 107.45

15 64.09 76.61 90.21 104.96

20 16.40 37.29 60.88 87.42

Table 8.4 Equivalent rates;
b(1) = b; TB1 = (0.02,LT4)

k g∗

5 0.02748

10 0.03009

15 0.03336

20 0.03718

annual benefit b = 100 could be bought, as it results fromTable4.7. As an alternative
to the immediate conversion of S into a life annuity, assume that the annual amount
b(1) = b is withdrawn from a fund (whose initial value is S). Table8.3 displays the
annuity benefit b(2) as a function of the delay k, and the interest rate g credited to the
fund throughout the delay period.We note that the technical basis TB1 = (0.02,LT4)
is adopted, whatever the delay k. If g = i ′ = 0.02, then we have, of course, b(2) < b;
further, b(2) decreases as the delay k increases. If g > i ′, we can have situations in
which the higher yield during the delay period implies b(2) > b, that is, a higher
annuity benefit.

Table8.4 shows, for various delays k (and still assuming b(1) = b), the “equivalent
rate”, namely the investment yield g∗ required to have b(2) = b, hence compensating
exactly the absence of mutuality during the withdrawal period. ❑

The delayed annuitization has some advantages. In particular:

• in the case of death before time k, the fund available constitutes a bequest (which
is not provided by a life annuity purchased at time 0, because of the mutuality
effect);

• more flexibility is gained, as the annuitant may change the income profile modify-
ing thewithdrawal sequence (however, with a possible change in the fund available
at time k).

We also note that, the lower the mortality, the lower is the required interest rate g∗.
It follows that, thanks tomortality improvements over time, the delayed annuitization
can become more and more interesting.

Conversely, a disadvantage is due to the risk of a shift to a different mortality
assumption in the pricing basis of life annuities, leading to a conversion rate at time
k which is less favorable to the life annuity purchaser than that in-force at time 0.
Further, if k is high, it may be difficult to gain the required investment yield (in
particular, avoiding too risky investments) to cover the absence of mutuality.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Fig. 8.2 Staggered annuitization

The ideas underlying the delayed annuitization can be generalized, leading to the
so-called staggered annuitization. As shown in Fig. 8.2, the staggered annuitization
can be defined as a process according to which:

• no life annuity is purchased at retirement time (time0), so that an incomedrawdown
process starts at that time;

• a first life annuity is purchased at time k′, by using part of the remaining amount
R′;

• a second life annuity is purchased at time k′′, by using part of the remaining amount
R′′;

• … …

The staggered annuitization implies that (after time k′) a share of the post-
retirement income consists of withdrawals whereas the remaining share is provided
by a (set of) life annuities. Advantages and disadvantages of this arrangement can be
easily understood looking atwhat noted above in relation to the delayed annuitization.

8.5.4 Phased Retirement

Several employment arrangements allow an employee to gradually move from the
working period to the retirement period. Such a progressive shift from full-time work
to full-time retirement is usually denoted as phased retirement (see also the Remark
in Sect. 8.2.1).

The phased retirement can be implemented in several ways (according to possible
constraints imposed by current legislation). For example:

1. an employeewho is approaching retirement age continuesworkingwith a reduced
working load, until the transition to full-time retirement;

2. an employee who reaches retirement age y asks for partially continuing his/her
working activity, or starting a similar activity, anyway with a limited working
load.
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We focus on solution 2, which in particular allows to maintain a higher income
than that received, as the post-retirement income, if the employee quits work entirely.

We assume that the employee chooses to obtain his/her income via an immediate
life annuity. However, thanks to partial retirement, an annual benefit is chosen, lower
than that needed in the case of total retirement. Hence, only a part of the available
amount S is annuitized at age y, namely at the beginning of the partial retirement
phase. Let b(A) denote the annual benefit which is paid from the beginning of this
phase onwards. Clearly b(A) < b, where b denotes the annual benefit provided by
the full annuitization of S (see Eq. (8.5.6)). The amount required to purchase a whole
life annuity with benefit b(A) is given by b(A) a′

y . Assume that the total duration of
the partial retirement phase is m years. At time m the following amount, R, will be
available

R = (S − b(A) a′
y) (1 + g)m (8.5.10)

where g denotes the interest rate credited on the non-annuitized fund throughout the
partial retirement phase. The amount R can be annuitized to obtain a further life
annuity with annual benefit b(B), determined by the following relation:

R = b(B) a′
y+m . (8.5.11)

Hence, during the total retirement phase, the retiree will cash the annual benefit
b(A) + b(B), which clearly depends on the interest rate g. Figure8.3 shows the annu-
itization process related to phase retirement.

Note that, as in the staggered annuitization process, the individual bears the risk
of an unfavorable change in the technical basis adopted at time m to determine the
benefit b(B) (while keeping access to the non-annuitized fund over the whole partial
retirement period).

The phased retirement process and the related annuitization process can be gen-
eralized in several ways. For example:

• more than just one phase of partial retirement can be envisaged, to implement a
more gradual shift from full-time work to full-time retirement;

Fig. 8.3 Annuitization in phased retirement
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• annuitization and income drawdown can coexist during the various phases (accord-
ing to arrangements like those described in Sect. 8.5.3).

8.6 Risks for the Provider

As we have mentioned in Sect. 8.3, several risks can be transferred to the provider
prior and after retirement, which require an appropriate management. Basically, in
this section, we summarize what are the risks, and when they are located. Most of
the comments quoted below have already been developed previously in this book,
with reference to life insurance.

In the following, we address both the working and the retirement period of an
individual; thus, time 0 now denotes the time when the individual joins the plan
(during his/herworking period), while r (r > 0) is the retirement time. The individual
age at time 0 is x , while at retirement it is y = x + r .

Let us first address the working period. For an individual joining the plan at time
0, and retiring at time r , the following fund is accumulated at time t , t = 1, 2, . . . , r ,
if no guarantee applies and no rider benefit is underwritten

Ft = (Ft−1 − EXt−1) (1 + gt ) + ct (8.6.1)

where F0 ≥ 0, ct is the contribution paid at time t , gt is the investment return in
year (t − 1, t), and E Xt−1 are the expenses and other fees charged to the individual
account at time t − 1. Following the notation adopted in Sects. 1.2.5 and 8.5, the
value Fr = S of the fund at time r is converted into a sequence of periodic amounts.
Note that in (8.6.1) we have assumed, similarly to Sect. 1.2.5, that the contribution
is paid at the end of the year, once the annual salary has been gained. In practice,
contributions may be paid at the end of each month, given that the salary is received
monthly; to shorten the notation, we prefer tomake reference to annual contributions.
Due to the fees charged to the individual account at the beginning of each year, it is
required F0 > 0 (namely, an entry fee is applied to new members). Further, at the
beginning of each year the fund must be large enough to cover the current fee. For
management fees this is always realized, as they are expressed as a proportion of the
value of the fund.

A financial guarantee affects the investment return. If the financial guarantee
concerns the annual return, then instead of (8.6.1) we should consider

Ft = (Ft−1 − E Xt−1) (1 + max{gt , i ′}) + ct (8.6.2)

where i ′ is the guaranteed annual return. The financial option embedded in (8.6.2)
is a cliquet option, and the financial risk borne by the provider is similar to what
emerges in participating policies. Note that no participation proportion is applied,
as here the option is explicit, and then a specific fee is applied. We assume that the

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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fee for the financial guarantee is included in E Xt−1; if the current fund value is not
large enough to meet the cost of the guarantee, then the guarantee is not provided (or
an additional contribution is required to the member).

Thefinancial guarantee, insteadof the annual return as in (8.6.2), could concern the
average return in a given period, such as the guarantee described by the accumulation
factor defined by (7.3.28). Similarly to what we have commented in Sect. 7.5, other
types of guarantees can be arranged, following the pay-off of the financial options
traded on the market. A fee is applied, which reflects the cost of the financial option.
Of course, an appropriate hedging of the financial guarantee must be realized by the
provider, through an adequate investment strategy.

Assume now that a lump sum death benefit Ct is underwritten, in the case of death
in year (t −1, t) before retirement. The amount Ct can be chosen in one of the forms
examined for life insurances; see in particular Sect. 5.4.4. An actuarial balance must
be realized by the provider, as follows:

Ft = (Ft−1 − E Xt−1) (1 + gt ) + ct − (Ct − Ft ) q ′
x+t−1. (8.6.3)

Equation (8.6.3) can be easily interpreted if compared to the recursive equation of
the reserve (5.4.8). Equation (8.6.3) shows us that the individual fund at time t for
a member still alive is the result of the annual contribution, of the investment of
the individual fund at the beginning of the year net of expenses (quantity (Ft−1 −
E Xt−1) (1 + gt )) and net of the cost of mutuality originated by the death benefit
(quantity (Ct − Ft ) q ′

x+t−1). Similarly to life insurance, the cost of mutuality is
assessed on the basis of a life table (from which the mortality rate q ′

x+t is derived),
which is guaranteed during the coverage period. Amortality risk then emerges for the
provider. If the observed frequency of death is higher than q ′

x+t , then an unexpected
cost emerges for the provider. Given thatwe are addressing theworking period,which
involves young adult ages, the risk is usually originated by random fluctuations (see
Sect. 2.3.1), and can be diversified by increasing the size of the pool or by taking an
appropriate reinsurance arrangement (see Sects. 2.4 and 2.5).

The death benefit could consist, instead of a lump sum, of a life annuity in favor
of the member’s spouse. The amount Ct in (8.6.3) would correspond to the actuarial
value of a life annuity depending on the lifetime of the spouse. A financial risk and a
mortality risk would be involved, similarly to any life annuity (see below). Overall,
two lives would be involved; in particular, a second life table would be required, for
the estimate of the spouse’s lifetime.

Disability benefits or other health insurance benefits can be underwritten as riders
during the working period. A disability benefit, in particular, could provide an annual
income to the member if, because of a sickness or an injury, the member is unable
to work; several policy conditions state the nature and the severity of the disability
which is covered. Further benefits could consist in a lump sum paid in the case of
an accident causing a permanent disability or the death of the member, a refund of

http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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medical expenses, an so on. All these benefits are managed by the provider on the
basis of themutuality principle; a risk of randomfluctuations emerges. If the provider
is not an insurer, usually protection is obtained from an insurer by underwriting an
appropriate insurance contract (a group insurance contract).

Let us now address the post-retirement period. As described in Sect. 8.5, the
member can select among a life annuity, an income drawdown, a combination of the
two or a phased retirement. As long as the fund is not annuitized, i.e., a life annuity
has not been underwritten, risks are borne by the member. Thus, the development of
the fund can be described as

Ft = (Ft−1 − E Xt−1) (1 + gt ) − b(1)
t (8.6.4)

where b(1)
t is the withdrawal at time t (note that (8.6.4) generalizes (1.2.19) in

Sect. 1.2.5). A financial guarantee can be underwritten, for example

Ft = (Ft−1 − E Xt−1) (1 + max{gt , i ′}) − b(1)
t . (8.6.5)

The annual fee E Xt−1 includes also the cost of the guarantee.
Assume now that a fixed-life annuity is underwritten at retirement time, i.e., that

the fund available at maturity is fully annuitized, with the guarantee of receiving the
annual amount b at the end of each year, until death. The amount Fr is transferred
to the provider (typically, an insurer), which has to set up an individual reserve in
face of its liabilities. The development in time of the individual reserve is described
as follows:

Vt + b = Vt−1 (1 + i ′) + (Vt + b) q ′
x+t−1 (8.6.6)

where Vt , as usual in life insurance, is the individual reserve. As noted in Sect. 8.5.3,
contrarily to the amount Ft + b(1)

t in (8.6.4) or (8.6.5), which in the case of death of
the member in year (t −1, t) is available to his/her estate (clearly if Ft +bt > 0), the
quantity Vt + b is available to the insurer in the case of death of the member in year
(t − 1, t), for the funding of mutuality. Equation (8.6.6) is the recursive equation of
the reserve (see Sect. 5.4.2). The following interpretation is useful, to understand the
risks taken by the insurer (see also Example 5.4.4). The quantity Vt + b represents
the amount the insurer must hold at time t if the member is alive: Vt is used to
carrying on the contract, while b must be paid to the member. This amount is funded
by the assets available for the policy at the beginning of the year, Vt−1, joint to the
interest guaranteed on their investment, Vt−1 i ′, and by the mutuality contribution
(Vt + b) q ′

x+t−1. We note that q ′
x+t−1 expresses the expected frequency of death,

which is estimated according to a given (projected and conservative) life table. If
the observed frequency of death is lower than q ′

x+t−1, then the insurer experiences
a longevity risk. The risk may be originated by random fluctuations, as well as by
systematic deviations (see Sect. 2.3.1). Systematic deviations, in particular, can be
originated by an unanticipated mortality dynamics. The term aggregate longevity
risk is used to refer to the systematic component of the longevity risk.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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We point out that in Eq. (8.6.6) we have disregarded expenses; just the net reserve
has been addressed. As described for a life insurance contract, a provision is set up
for meeting the annual expenses charged to the contract (see Sect. 5.6). At time r ,
the individual fund Fr = S is used to meet the cost of the annuity, namely V0, and
the loading for expenses, Θ [A] + Θ [G].

The rate i ′ in Eq. (8.6.6) is a technical interest rate, so it is guaranteed. The provider
has to assign an annual return which is exactly i ′, and this originates a financial
risk. Given that usually i ′ is set at a low level, the risk is not severe. However, a
participating life annuity is more usual than a fixed-benefit life annuity. In this case,
the development in time of the individual reserve is described as follows:

Vt + bt = Vt−1 (1 + max{ηt gt , i ′}) + (Vt + bt ) q ′
x+t−1 (8.6.7)

where we have adopted the notation introduced for participating policies (see
Sect. 7.3); note, in particular, that we have considered the standard revaluation rate
r [1]

t (defined by (7.3.6)). The quantity bt is the annual amount to be paid at time
t , which includes the adjustments at previous years (see Sect. 7.2.2). As noted in
Sect. 7.3, the interest rate i ′ in (8.6.7) is a minimum guaranteed annual return; the
financial risk to which the insurer is exposed requires an appropriate hedging.

The longevity risk implied by (8.6.6) or (8.6.7), which is originated by the
longevity of the annuitants, can be mitigated by a death benefit. Assume that a lump
sum Ct is paid at time t in the case of death in year (t − 1, t). We refer to the case of
a fixed annual amount (i.e., to (8.6.6)). First, we note that given the fund available at
time r , Fr = S, if a death benefit is underwritten, then the annual amount is lower
than the amount b in (8.6.6); we denote the new amount by b′. The development in
time of the individual reserve is now described as follows:

Vt + b′ = Vt−1 (1 + i ′) + (Vt + b′ − Ct ) q ′
x+t−1. (8.6.8)

In face of reasonable choices for Ct , the quantity (Vt + b′ − Ct ) is positive, so that
the provider is still exposed to the longevity risk, but lower then Vt + b in (8.6.6).
This reduces the need for mutuality, and then the importance of longevity risk. If
the death benefit consists of a life annuity in favor of the annuitant’s spouse, than
Ct would correspond to the actuarial value of a life annuity, which originates further
longevity risk for the provider (given that two lives are involved).

From the discussion above, it emerges that the main risks for a pension provider
are the financial and the mortality/longevity risks. The mortality risk, in particular,
arises during the working period, while the longevity risk in the post-retirement
period. While during the working period the mortality risk is not too important (due
to the range of ages involved), after retirement the longevity risk, and in particular the
systematic component, may become considerable. After retirement, it is worth noting
that when t is small (i.e., not too far away from the retirement time), the expected
frequency of death is low, so that the contribution expected from mutuality in (8.6.6)
or (8.6.7) is small (and it is even smaller in (8.6.8)); conversely, the individual reserve

http://dx.doi.org/10.1007/978-3-319-21377-4_5
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http://dx.doi.org/10.1007/978-3-319-21377-4_7
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is high, the size of the gain on investments is expected to be large (given that a large
amount of money is invested), and then the financial risk may be important. When t
is high (namely, far away from the retirement time), the rate q ′

x+t−1 is high, so that
a major contribution is expected from mutuality, and this increases the importance
of the longevity risk; at the same time, the financial risk is moderate, as the size
of the assets is small. In order to understand how the importance of the financial
risk versus the longevity risk evolves in time in a life annuity, we suggest to look at
Example 5.4.4.

As a final source of risk, we mention the GAO (Guaranteed Annuity Option; see
the Remark in Sect. 7.10). With reference to the possible choice at retirement of a
life annuity, a guaranteed annuitization rate (GAR) 1

a′
x+r

may be underwritten before

retirement time. Since the rate 1
a′

x+r
requires the choice of an interest rate and a life

table, the provider is exposed to financial and longevity risk. The financial risk is
originated by the possibility that the interest rate included in the GAR is too high in
relation to the market rates at retirement time; the longevity risk is originated by the
possibility that at retirement time a new (projected) life table is available, according
to which the life table adopted in the GAR is considered to be no longer conserv-
ative. The exercise of the GAO is affected by the comparison between the current
annuitization rate (CAR) and the GAR, but also by the preferences of the member
in respect of receiving a life annuity (instead of entering into an income drawdown
process). In any case, the GAO implies a financial option, whose underlying is given
by the current annuitization rate (CAR). A fee must be applied by the provider, but
calculating this fee is hard work, as the financial option is very particular (for exam-
ple, the underlying is an annuitization rate) and its value depends on interest rates,
life tables, as well as on the member’s preferences in respect of the life annuity.

The management of the risks taken by the provider should follow the guidelines
described in Sect. 1.3. Risks must be identified and assessed, their impact must be
assessed, and appropriate actions must be taken either for controlling or financing the
loss. Monitoring is also an important step of the risk management, as the importance
of the several risks may change in time, as we have mentioned above.

8.7 References and Suggestions for Further Reading

The book byMilevsky (2006) is specifically devoted to post-retirement income plan-
ning, and life annuities and pensions in particular. Other basic references on these
issues are Milevsky (2013) and Rocha et al. (2011).

Aging and post-retirement solutions are also discussed by Fornero (2004) and
Bertocchi et al. (2010).

Group insurance (including health group insurance) is dealt with in the contribu-
tions collected in Bluhm (1992).

In this chapter we have not dealt with methods for funding benefits in group pen-
sion plans, from an actuarial perspective. The reader interested in these issues can

http://dx.doi.org/10.1007/978-3-319-21377-4_5
http://dx.doi.org/10.1007/978-3-319-21377-4_7
http://dx.doi.org/10.1007/978-3-319-21377-4_1


438 8 Pension Plans: Technical and Financial Perspectives

refer to Booth et al. (2005) (Part IV), Anderson (2006), andWinklevoss (1993). Actu-
arial aspects of pension plans are also addressed by Bowers et al. (1997) (Chap.20).

Financial risks in pension plans and related risk management solutions are
focussed by Gajek and Ostaszewski (2004).

Finally, we recall that the book by Pitacco et al. (2009) also addresses the impact
of future mortality trends on the costs of pensions and life annuities.



Chapter 9
Non-life Insurance: Pricing and Reserving

9.1 Introduction

The purpose of this chapter is to introduce the fundamentals of the actuarial valuation
of non-life insurance covers. First we give an overview of the contents of non-life
insurance products, then we focus on premium calculation and reserving issues.
While numerical examples are provided, specific covers are not dealt with in detail.
To develop premiums and reserves for specific lines of business, further reading is
required (some suggestions are provided in Sect. 9.13).

In detail, the main issues dealt with in this chapter are the following:

• general aspects of non-life insurance products;
• main policy conditions limiting the liability of the insurer;
• premium calculation and related statistical bases;
• general aspects of the stochastic modeling of the payment of the insurer;
• technical reserves;
• profit assessment.

Problems other than those focused in life insurance technique will emerge. In
particular, while investment perspectives can be disregarded, modeling the uncer-
tainty of the payout of the insurer is a major issue. For a contract, such uncertainty
concerns the number of events originating a payment by the insurer, the amount of
each payment and the time of each payment. Clearly, in face of such uncertainty, a
stochastic modeling of the insurer’s payout could be consideredmore coherent than a
deterministic representation. Indeed, for some lines of business (e.g., those subject to
extreme events), a stochastic modeling is necessary to avoid biased valuations. How-
ever, a deterministic modeling is satisfactory in many cases. Given the introductory
character of this chapter, we mainly discuss deterministic models.
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9.2 Non-life Insurance Products

A short description of the main features of non-life insurance products is provided in
this section, mainly aiming at introducing the basic items involved in premium and
reserve calculation.

9.2.1 General Aspects

Thecontents of non-life insurance (also namedgeneral insuranceor property/casualty
insurance) is compensating a person or an organization for a loss or a damage to
his/her property or for the liability to indemnify a third party for a loss or a damage
arising from specified contingencies such as fire, theft, injury, negligence, and so on.
Health insurance is the term used when the purpose is to compensate a person or
his/her family for the economic consequences of an alteration of the health status
originated by a sickness or an accident.

In a non-life insurance contract, the benefit amount is not stated in advance. Except
for covers with forfeiture benefits (see Sect. 9.2.2), the amount paid by the insurer
depends on the severity of the loss or damage suffered by the insured or by a third
party, in respect of which the insured is liable. Further, the total payout of the insurer
for one policy depends not just on the size of each loss, but also on the number of
events determining a loss or a damage to the insured or to a third party. Both are
unknown at the time of issue.

The insurance coverage period is usually short, typically one year; a single pre-
mium is the common arrangement. The contractmay be subject to automatic renewal,
so that the contractual relationship between the insured and the insurer extends over
more than one year. However, premiums keep on being paid yearly, and each of them
is the single premium for the relevant year. The times of occurrence of the adverse
events are unknown, as well as the time of the relevant settlement. In respect of
the latter, the time-span of an annual policy may extend well beyond one year, for
example in case of litigation in setting the eligibility to or the size of the benefit. This
aspect must be allowed for, in particular, in the calculation of technical reserves. The
term policy year is used to refer to the coverage period, i.e., the period in which
claims are covered by the insurer.

9.2.2 Main Categories of Non-life Insurance Products

Non-life insurance includes a wide range of products, offering protection in respect
of many risks. We do not aim to provide a comprehensive and detailed presentation
of the possible contents of non-life insurance covers; we just give some information,
which are useful to understand the fundamentals of pricing and reserving.
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The non-life business may be segmented according to different perspectives. Con-
sidering the possible contractor, we may distinguish between personal insurance,
addressed to individuals or families (e.g., motor insurance, health insurance, home-
owners insurance, and so on), and commercial insurance, addressed to business
entities (e.g., transportation insurance, workers compensation, and so on). In rela-
tion to the possible beneficiary, we may classify as property insurance, liability (or
casualty) insurance, and health insurance. Property insurance provides financial pro-
tection against a possible loss of or damage to the property of the insured, including
loss of profits or emergence of costs; liability (or casualty) insurance offers financial
protection against various liability claims; health insurance, as stated above (see
Sect. 9.2.1), offers financial protection for expenses or loss of income originated by a
sickness or an accident (we note that some forms of health insurance, typically those
with forfeiture benefits and a duration of more than one year, are classified within
life insurance).

Going into greater detail in respect of the insured contingency, we can iden-
tify the following main classes of non-life insurance products: in the framework of
health insurance, personal accident insurance (providing forfeiture benefits in case
of bodily injury or dismemberment), and sickness insurance (providing hospital-
ization benefits and reimbursement of medical expenses); motor insurance (merg-
ing liability and property insurance benefits in favor of car owners); marine and
transportation insurance (usually a separate line in respect of personal motor insur-
ance); insurance against fire and other damages to property; liability insurance; credit
insurance.

With regard to the timing of claim settlement, the business may be short-tail or
long-tail; usually, liability business is long-tail, given possible litigations concerning
the existence and the size of the claim, while property insurance is short-tail, as it is
relatively easy to verify the existence and the size of a loss. Personal insurance lines
tend to be less volatile than commercial lines; some lines of business may be severely
exposed to catastrophe risk, e.g., homeowners business located in geographical areas
subject to earthquakes or hurricanes.

From the presentation above, the large variety of products that fall within non-
life insurance emerges. While the general principles for pricing and reserving are
common to all the business lines, the specific methods applied in practice may differ
significantly, consistent with the features of the particular line of business dealt with.
As mentioned previously, we aim just at describing the general principles.

Asmentioned in Sect. 9.1, an essential component of pricing and reservingmodels
for non-life insurance is the representation of uncertainty, i.e., of the random occur-
rence and amount of claims. However, a stochastic approach is not always strictly
required; for many purposes, deterministic models provide a satisfactory represen-
tation.
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9.3 Loss and Claim Amount

As a first step in the valuation of a non-life insurance contract, in particular for
premiumcalculation, the possible amount of claimsmust be assessed.Not necessarily
a loss suffered by the insured (emerging either from a damage to his/her property,
a liability, or medical expenses) is covered in full by the insurer. Limitations to the
insurer’s payment may be introduced through appropriate policy conditions.

Let us refer to a policy covering a given risk (for example, motor insurance),
with term one year. During the year, the policy will record a random number N of
claims. The possible outcomes of N are 0, 1, . . . (similarly to Case 3d in Sect. 1.2.4).
Each claim will cause a random loss to the insured. We denote by Xk the loss to the
insured caused by claim k, k = 1, 2, . . . According to policy conditions, the insurer
will assess the claim amount Yk for claim k. Reasonably, Yk ≤ Xk , to prevent moral
hazard. In general terms, the claim amount Yk is a given function of the loss amount
Xk ; such a function is called the claim function. Under the same contract, a different
claim function could be selected for each claim, so that (for example) the higher
is the number of claims reported so far, the more restrictive is the policy condition
applied to the current claim. For brevity, we will disregard this possibility, so that
the same claim function f will apply to any claim, i.e., Yk = f (Xk).

Remark The settlement of a claim originates some expenses, the so-called claim settlement or
claim processing expenses (see also Sect. 9.6). The total cost of a claim to the insurer, i.e., Yk and
claim settlement expenses, is sometimes called the loss amount. Further, sometimes Yk is meant to
already include claim settlement expenses, and hence it is Yk to be called loss amount. To avoid any
misunderstanding, we prefer to use the term “loss” just to refer to Xk ; in the following (unless it is
necessary, due to the prevailing terminology in practice) we will refer to Yk as to the claim amount,
not inclusive of claim settlement expenses.

Under the full compensation arrangement, the insurer pays in full the loss suffered
by the insured or by a third party; thus, the claim function is defined as follows

Yk = Xk (9.3.1)

In property insurance, arrangement (9.3.1) is known as full value, while in liability
insurance as unlimited liability. Figure9.1 provides a graphical representation. In
the case of property insurance, the maximum loss amount and then the maximum
payment by the insurer are given by the value V of the property (so the graph in
Fig. 9.1 should be read for Xk ≤ V ); conversely, no natural cap is provided for the
payment by the insurer in the case of liability insurance (in this case, the graph in
Fig. 9.1 must be read for Xk > 0).

Remark Experience could suggest that some extreme values for the loss amount are unrealistic.
The maximum probable loss (or MPL), in particular, is defined as

MPL = inf{x : P[Xk ≤ x] = 1} (9.3.2)

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 9.1 Claim amount
according to full
compensation
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In words: the MPL is the highest value for the loss originated by a (single) claim for which the
probability to occur is positive. In the case of property insurance, it may turn out MPL < V ; in the
case of liability insurance, we exclude to observe loss amounts higher than the MPL.

Arrangement (9.3.1) is clearly unsatisfactory for the insurer. Not only it is exposed
to the risk of large claims, but it is also facing small claims, which are usually high in
numbers and carry processing costs which may exceed the benefit amount. Further,
the insured could be careless in preventing accidents, given that the cost of a claim
is fully charged to the insurer.

Small claims can be avoided through deductibles. In particular, according to a
franchise (or minimum) deductible the insurer only intervenes if the loss amount
is above a given threshold, the deductible d. The claim amount is then defined as
follows (see also Fig. 9.2):

Yk =
{
0 if Xk ≤ d

Xk if Xk > d
(9.3.3)

Fig. 9.2 Claim amount
according to the franchise
deductible

Yk

Xk
d

d
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Fig. 9.3 Claim amount
according to the
fixed-amount deductible
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According to a fixed-amount deductible, an amount d is always charged to the
policyholder; clearly, if the loss amount is lower than d, there is no payment by
the insurer. The claim amount is then defined as follows (see also Fig. 9.3 and, in
Sect. 1.3.6, Fig. 1.9 and Eqs. (1.3.4a) and (1.3.4b)):

Yk =
{
0 if Xk ≤ d

Xk − d if Xk > d
(9.3.4)

A proportion α of the loss (0 ≤ α < 1) is charged to the insured under the propor-
tional (or fixed-percentage) deductible; in this case, the claim amount is defined as
follows (see also Fig. 9.4 and, in Sect. 1.3.6, Fig. 1.8 and Eqs. (1.3.3a) and (1.3.3b)):

Yk = (1 − α) Xk; 0 ≤ α < 1 (9.3.5)

Note that the higher is the loss amount, the higher is the cost charged to the insured.
The arrangement is usual in property insurance, in case the insured value, V ′, is
lower than the current value of the property, V . In this case, α = max{1 − V ′

V , 0}.

Fig. 9.4 Claim amount
according to the proportional
deductible

Yk

Xk

α Xk

(1 α)Xk

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1


9.3 Loss and Claim Amount 445

Fig. 9.5 Claim amount
according to the limit value Yk

Xk
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Note that V is usually ascertained at the time of claim occurrence, while V ′ is set at
policy issue (or renewal time); due to a depreciation or a revaluation of the property,
it may well turn out V � V ′. In case V ′ < V , the insurer reduces accordingly the
claim amount, to avoid that at issue the insured reports an underestimated value of
the property, so to pay a lower premium. Of course, underinsurance (i.e., V ′ < V )
can be a specific choice of the insured. The proportional deductible is applied also in
covers where the behavior of the insured can affect the claim cost, such as sickness
insurance, theft insurance, all risks motor insurance, and so on.

In order to avoid large claims, the insurer may apply upper limits. If a limit value
M is adopted, the claim amount is defined as follows (see also Fig. 9.5):

Yk = min{Xk, M} (9.3.6)

In liability insurance, the limit value is also called the capacity of the policy; in
property insurance (where M < V ), the arrangement is also called first loss.

Policy conditions are usually arranged in various combinations: for example,
in property insurance the proportional deductible is usually joint to a franchise
deductible; in liability insurance, a deductible (either franchise or fixed-amount)
and a limit value are usual (in property insurance, the possible claim of the insurer is
naturally capped by the value of the property, if no limit is explicitly set; conversely,
in liability insurance, the maximum claim amount is completely unknown if a limit
value is not adopted). Table9.1 provides an example of claim amount determined
according to alternative policy conditions, for three possible loss values.

The claim functions described above represent the most common forms of limita-
tion to the insurer’s liability. Insurance practice provides further examples of policy
conditions; some of them are in particular suitable for a specific line of business (and
not for others). Overall, deductibles and limit values result in a premium reduction,
as the cost of the benefit turns out to be reduced. As already noted, deductibles allow
the insurer to avoid the settlement costs of small claims; thus, they also originate a
reduction of the expense loading. Conversely, limit values, avoiding too large claims,
reduce the risk profile of the insurer and thus may lead to a lower safety loading.
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Table 9.1 Claim amount under alternative policy conditions

Policy conditions Loss

100 500 1000

Full compensation 100 500 1000

Franchise deductible, d = 150 0 500 1000

Fixed-amount deductible, d = 150 0 350 850

Proportional deductible, α = 5% 95 475 950

Limit value, M = 900 100 500 900

Proportional deductible, α = 5%, and
limit value, M = 900

95 475 900

Franchise deductible, d = 150, and limit
value, M = 900

0 500 900

Franchise deductible, d = 150, propor-
tional deductible,α = 5%, and limit value,
M = 900

0 475 900

9.4 The Equivalence Premium

By definition, the equivalence premium is the expected present value of the insurer’s
payout (see Sect. 1.7.4). To calculate this value, specific items must be allowed for,
according to the type of insurance cover dealt with.

9.4.1 The Items of the Equivalence Premium

In non-life insurance, the following items must be considered for the calculation of
the equivalence premium:

• the number of claims which may be reported by a policy during the coverage
period;

• the claim amount of each possible claim;
• the time of payment of each claim;
• the value of time.

As discussed in Sect. 9.3, the amount of a claim is a function of the loss suffered by
the insured, as it is defined by the policy conditions applied. To some extent, also
the number of claims is affected by policy conditions, as deductibles exclude small
claims. The description of the possible time-pattern of a claim, aswell as assumptions
for its representation are discussed in the next section.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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t1 t2 t3 t4

occurrence notification settlement closure

Fig. 9.6 The possible time-pattern of a claim

9.4.2 The Time-Pattern of a Claim

Figure9.6 provides an example of the possible development of a single claim. The
claim occurs at time t1; such a time must fall before the policy term (which we
assume to be one year); if we denote by 0 the time of policy issue, then wemust have:
0 < t1 ≤ 1. Conversely, times t2, t3 and t4 may fall after the maturity of the policy.
The time-lag between occurrence and settlement may be due to the administrative
processing of the claim, to possible litigations, and so on. The time-lag between
occurrence and notification may run from some days (e.g., for property or motor
insurance) to years (e.g., for liability in health insurance, due to the nature of the
damage, which may be perceived just after some time since when it was incurred).
Between times t1 and t2, the claim is incurred but not reported (IBNR). Between
times t2 and t4 it is outstanding. At time t4, the liability of the insurer (for this
specific claim) is written off. In normal situations, the closure of the claim occurs
right after settlement; in case of litigation, the closure may take place after some
time, due to the possibility of a further payment required to the insurer, or also of a
partial recovery of the settled amount.

Figure9.6 suggests that the settlement of a claim may occur far away since occur-
rence. However, to the purpose of premium calculation, usually the following two
assumptions are adopted:

• the claim is reported as soon as it occurs, and it is immediately settled (in the
example of Fig. 9.6 we would assume: t1 = t2 = t3);

• the times of occurrence of claims are uniformly distributed over the year, so that
on average claims occur in the middle of the policy year (in the example of Fig. 9.6
we would then assume: t1 = 1

2 ).

9.4.3 The Expected Aggregate Claim Amount

Let us refer to a policy with term one year. During the policy year, N claims may be
reported, N = 0, 1, . . . Realistically, the number of claims is limited, so that we can
refer to a maximum (reasonable) outcome nmax for N , as suggested by the physical
features of the insured risk (e.g., the risk cannot report more than one claim per day),
by policy conditions (e.g., no compensation is acknowledged if the number of claims
exceeds a given threshold), or by empirical evidence. Within a deterministic setting,
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we do not need to take care of this aspect, so that we will let N take any possible
integer value. Then, Xk is the loss amount (to the insured) for claim k, k = 1, 2, . . . ;
as discussed in Sect. 1.2.4 (see Case 3b), Xk is a random variable that can take only
positive values, given that the case of a null loss is expressed by N = 0.

Remark To be more precise, Xk is defined conditional on having observed N ≥ k. From a practical
point of view, this means that Xk is the loss amount of a claim which has occurred. However, the
random variable Xk is defined at issue, when the number of claims is not known. So, we should
better assume that Xk is defined whatever the number of claims will be, but necessarily Xk = 0 if
N < k, whilst Xk > 0 if N ≥ k. From a probabilistic point of view, this latter approach is more
accurate. However, to the purpose of simplifying the presentation, we can accept the idea that Xk
is the claim amount of a claim that has occurred; the main conclusions of the discussion are not
affected by this simplification.

According to policy conditions, the claim amount Yk (i.e., the payment made by
the insurer) is defined as a function of Xk , k = 1, 2, . . . , N ; we note that, because of
deductibles, it is possible that Yk = 0, while Xk > 0. In practice, it often happens
that the insured does not report the claim if the loss amount is below the deductible;
in this case, also Yk would only take positive values.

Assuming that claims are immediately reported and settled, and that they occur
on average at the same time, i.e., in the middle of the policy year (see Sect. 9.4.2),
the aggregate claim amount (or total payout of the insurer) in a year for a policy is
defined as follows:

S =
{
0 if N = 0

Y1 + Y2 + · · · + YN if N > 0
(9.4.1)

The equivalence premium, P, by definition the expected present value of the
insurer’s payout, is then assessed as

P = E[S] (1 + i′)−1/2 (9.4.2)

where the expected valueE[S] is calculated according to realistic assumptions for the
number of claims N and for the claim amounts Y1, Y2, . . . , YN , whilst i′ is the annual
interest rate expressing the time-value of money. Usually, a conservative assumption
is adopted for i′; possibly, i′ = 0, due to the short duration of the policy. For brevity,
in the following we set i′ = 0 (a quite usual choice also in practice).

As commented in Sect. 1.4.4, the calculation of E[S] is usually performed accept-
ing the following assumptions:

1. the random variables Xk are independent of the random number N ;
2. whatever the outcome n of N , the random variables X1, X2, . . . , Xn are

a. mutually independent;
b. identically distributed (and hence with a common expected value, say

E[X1]).
We further assume that

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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3. the same policy conditions are applied to any claim, so that also the random vari-
ables Y1, Y2, . . . , Yn are identically distributed (it follows, in particular, that if we
assign the probability distribution of Y1, we also hold the probability distribution
of any claim amount Yk , k = 1, 2, . . . , n). The random variables Y1, Y2, . . . , Yn,
then, have a common expected value (say, E[Y1]).

Thanks to such assumptions, S has a compound distribution, with components Y1,
the so-called claim severity, and N , the so-called claim frequency. Then, following
steps similar to those described in Sect. 1.4.4, the expected aggregate claim amount
E[S] can be factorized as follows (see (1.4.39)):

E[S] = E[N] E[Y1] (9.4.3)

We note that, for the assessment of the expected total payout, and then of the
equivalence premium, all what we need is an estimate of the expected claim fre-
quency, E[N], and the expected claim severity, E[Y1]; see also Sect. 9.7 and Case 3d
in Sect. 1.2.4. No specific distributional assumption is required for N and Y1 (how-
ever, we stress that result (9.4.3) is underpinned by assumptions (1)–(3), which in
fact relate to the probability distribution of S).

9.5 The Net Premium

In order to determine the net premium, a safety loading must be added to the equiv-
alence premium. As is well-known (see Sects. 1.7.4 and 2.3.6), the safety loading is
a reward for the risks borne by the insurer; meanwhile, the safety loading represents
the expected profit to the insurer. In non-life insurance, an explicit assessment of the
safety loading is usually performed, as the data on which the claim frequency and
the claim severity are estimated are based on insurance experience (see Sect. 9.7), so
that they originate a realistic valuation of the insurer’s liability.

The rule adopted to determine the safety loading is called premium principle. To
be precise, a premium principle (as is suggested by the name) is a formula for the
calculation of the net premium; the safety loading can then be assessed subtracting
the equivalence from the net premium. A description of the more practical premium
principles follows.

According to the expected value principle, the net premium is calculated as
follows:

Π = (1 + α)E[S] (9.5.1)

where α is a given proportion (α > 0). The safety loading, α E[S], is proportional
to the expected total payout of the insurer. The advantage of this rule is that data
required for the calculation of the net premium coincide with those used for the
equivalence premium; the disadvantage is that the safety loading is not based on a
risk measure. An expression alternative to (9.5.1) is as follows:

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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Π = E[S] + κΠ (9.5.2)

where the safety loading, κΠ , is expressed as a proportion of the net premium. It
turns out:

Π = 1

1 − κ
E[S] (9.5.3)

Clearly, (9.5.1) and (9.5.2) are equivalent, provided that α = κ
1−κ

.
A safety loading proportional to a risk measure is originated by the variance

principle. In this case, the net premium is assessed as follows:

Π = E[S] + λVar[S] (9.5.4)

where λ (λ > 0) is a given intensity.

Remark We note that λVar[S] must be an amount; since Var[S] is an amount to the square, the
dimension of λ must be that of 1

amount . Otherwise said, λ is an intensity.

The safety loading, λVar[S], is proportional to the variance; its quality as a risk
reward depends on the appropriateness of the variance in quantifying the risks orig-
inated by S. To understand if this is the case, the probability distribution of S should
be analyzed. If it is “regular enough”, i.e., it is symmetric and short tailed, then the
variance is a good risk measure; see Sect. 9.8 for comments in this regard. We point
out that (9.5.4) requires further data in respect of those used for the calculation of the
equivalence premium; this justifies the large preference, in practice, for the expected
value principle.

Remark It is interesting to obtain the expression ofVar[S], to understand in detail what information
are required for implementing rule (9.5.4). To shorten the notation, as in Sect. 1.4.4 we let P[N =
h] = πh. In general terms,

Var[S] = E[S2] − (E[S])2 (9.5.5)

We already know the expression of E[S] (see (9.4.3)), so now we need to work out E[S2]. We have

E[S2] = ∑∞
h=1 πh E[S2|N = h] = ∑∞

h=1 πh E

[(∑h
i=1 Yi

)2 |N = h

]

= ∑∞
h=1 πh

(∑h
i=1 E[Y2

i |N = h] + ∑h
i=1

∑
j:j �=i E[Yi Yj|N = h]

) (9.5.6)

Thanks to assumption (1) (and (3)), E[Y2
i |N = h] = E[Y2

i ] for all i and E[Yi Yj|N = h] = E[Yi Yj]
for all i, j. Thanks to assumption (2a) (and (3)), E[Yi Yj] = E[Yi]E[Yj] for all i, j. Finally, thanks
to assumption (2b) (and (3)), E[Y2

j ] = E[Y2
1 ] for all i and E[Yi] = E[Y1] for all i. Replacing into

(9.5.6), we obtain

E[S2] = ∑∞
h=1 πh hE[Y2

1 ] + ∑∞
h=1 πh h (h − 1) (E[Y1])2

= E[N]E[Y2
1 ] + E[N (N − 1)] (E[Y1])2 = E[N]Var[Y1] + E[N2] (E[Y1])2

(9.5.7)

When we plug (9.5.7) into (9.5.5), we finally find

Var[S] = E[N]Var[Y1] + Var[N] (E[Y1])2 (9.5.8)

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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from which we learn that to implement rule (9.5.4) we first need an estimate of the expected
claim frequency, E[N], and the expected claim severity, E[Y1], i.e., the same data required for the
equivalence premium; we further need an estimate of the variance of the claim frequency, Var[N],
and the variance of the claim severity, Var[Y1].

Quite similar to the variance principle, the standard deviation principle assesses
the net premium as follows:

Π = E[S] + β
√
Var[S] (9.5.9)

where β (β > 0) is a given proportion. The main advantage of (9.5.9) in respect
to (9.5.4) consists in the fact that the parameter β is unit-free (while, as recalled
above, λ is an intensity). Apart from this, the rationale of the two rules is similar; in
particular, the same amount for the net premium could be determined under the two
rules, provided that β = λ

√
Var[S].

Example 9.5.1 Assume E[S] = 1.30 and Var[S] = 13. The equivalence premium
is: P = E[S] = 1.30. Then assume that the net premium is: Π = 1.40; trivially, the
safety loading is:Π−P = 0.10. Such a value could have beenobtained (alternatively)
as follows:

• through the expected value principle, taking: α = Π
E[S] − 1 = 7.692% or κ =

1 − E[S]
Π

= 7.143%;

• through the variance principle, taking: λ = Π−E[S]
Var[S] = 0.00769;

• through the standard deviation principle, taking: β = Π−E[S]√
Var[S] = 2.774%.

❑

Wehave commented above on some practical implications of the various premium
principles. It is worthwhile to note that a premium principle defines a functional H
which assigns a positive real number (namely, the net premiumΠ ) to the distribution
function of the aggregate claim amount S; thus, Π = H[S]. Some mathematical
properties should be satisfied by H, which are relevant from a practical point of
view. We recall the main properties.

(P1) For any S, it must turn out:
H[S] > E[S] (9.5.10)

This is an obvious requirement: the safety loading must be positive.
(P2) If S1 and S2 are two independent risks (i.e., the aggregate claim amounts of

two independent risks), we require:

H[S1 + S2] ≤ H[S1] + H[S2] (9.5.11)

This prevents the insured to find convenience in fragmenting the risk.
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(P3) Given two independent risks S1 and S2, we require:

H[S1] ≤ H[S1 + S2] (9.5.12)

If the cover protects against a wider range of risks, the premium should be
higher.

(P4) Given two positive real numbers a and b, we require:

H[aS + b] ≥ aH[S] + b (9.5.13)

The constant b represents an increase of the claim amount, common to all the
possible claims; similarly, a represents a proportional increase of any possi-
ble claim. If the possible amount of any claim increases, we expect a similar
increase in the premium. We note that the property is not satisfied by the
variance and the standard deviation principles (the variance principle fulfills
(9.5.13) only if b = 0).

(P5) If the claim amount cannot exceed an amount K , or if there exists a positive
amount K such that P[S ≤ K] = 1, then it must turn out:

H[S] ≤ K (9.5.14)

Also this property is quite obvious: no insured would rationally be willing to
pay a premium higher than themaximum compensation he/she can realistically
obtain from the insurer.

We mention a last premium principle. The event S > Π represents a situation of
(economic) loss to the insurer. According to the percentile principle, the net premium
Π must be such that

P[S > Π ] = ε (9.5.15)

where ε (ε > 0) is the accepted loss probability. To apply (9.5.15), the probability
distribution of S must be assigned; the technical implementation of rule (9.5.15)
may be time-consuming, and clearly data for the estimate of the whole probability
distribution of S are required. In practice, simpler rules are preferred, unless extreme
risks are transferred to the insurer.

9.6 The Expense-Loaded Premium

Expenses charged to a non-life insurance policy include:

• the initial commission;
• administrative and other expenses;
• claim settlement expenses.
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The latter are sometimes reported joint to claim amounts, so that an explicit loading
is not applied (to avoid a double charge). Expenses may be fixed or floating; in this
latter case, their amount may depend either on the number of claims, the amount of
premiums or the amount of claims.

In most practice, a global (or forfeiture) loading rule is adopted. Assume that the
net premium is calculated according to the expected value principle, that is using
(9.5.2) and (9.5.3). Then, the forfeiture expense-loaded premium is given by:

Π [T] = E[S] + κΠ [T] + γΠ [T] (9.6.1)

where γ is the global expense loading rate. Hence:

Π = 1

1 − κ − γ
E[S] (9.6.2)

However, the global loadingmay be justified only considering in detail the several
types of expenses which may be charged to the policy. This means that:

1. an analytical loading rule is first adopted, so that a loading component can be
determined for each type of expense;

2. then, the safety loading and the expense loading are expressed by a (global)
loading formula.

In the following, we examine such an approach, still assuming that the net premium
has been calculated according to the expected value principle.

We consider the following classes of expenses:

• initial commission: Θ [A] (stated as a fixed amount);
• administrative and other expenses: Θ [G] (stated as a fixed amount);
• claim settlement expenses: Θ [S] (stated as an amount per claim).

The expense-loaded (or gross) premium, Π [T], is defined as follows:

Π [T] = E[S] + κ Π [T] + Θ [A] + Θ [G] + Θ [S]
E[N] (9.6.3)

where κ is the safety-loading proportion, applied to the expense-loaded premium
(instead of the net premium). We note that if claim settlement expenses are included
in the cost of claims, then Θ [S] = 0.

Replacing (9.4.3) into (9.6.3) and rearranging, we obtain

Π [T] = E[S]
1 + Θ [S]

E[Y1]
1 − κ

+ Θ [A] + Θ [G]

1 − κ
(9.6.4)

Setting: δ =
1+ Θ[S]

E[Y1]
1−κ

and e = Θ [A]+Θ [G]
1−κ

, we finally get to the forfeiture formula

Π [T] = δ E[S] + e (9.6.5)
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quite common in practice. We note that, in principle, the parameters δ and e should
reflect the various expenses charged, as well as the safety-loading proportion. In
practice, some approximated choices could be adopted.

Example 9.6.1 Assume E[S] = 1.30 and E[N] = 0.13. Let the expense-loaded
premium be: Π [T] = 1.50. Such a value could have been obtained assuming the
following loading parameters:

• safety loading: κ = 7% (per unit of expense-loaded premium);
• initial and administrative expenses: Θ [A] + Θ [G] = 0.0924 (fixed amount);
• claim settlement expenses: Θ [S] = 0.02 (amount per claim).

We find: δ = 1.07742 (proportion of the expected aggregate claim amount) and
e = 0.10 (fixed amount). ❑

9.7 Statistical Data for the Equivalence Premium

In this section, we illustrate some quantities which can be used to estimate the
expected claim frequency, E[N], the expected claim severity, E[Y1], and then the
expected total payout for a policy, E[S]. Data are collected from a set of policies
with specified features.

Remark Assume that all policies are termed one year. As already mentioned in Sect. 9.2.1, the
time between the issue (or renewal) time of a policy and its maturity (or next renewal time) is called
policy year. Reasonably, such a period does not coincide with the calendar year (unless the policy
is issued on January 1). Data on claims may be collected either on a calendar or a policy year
basis. For pricing, policy year data are appropriate, as the premium has to match the cost of claims
arising during the life of the policy. Conversely, when reporting the result of the management of
the portfolio, the natural reference is to the calendar year. In the following, we will specify which
is the form of data we are referring to.

9.7.1 Risk Premium, Claim Frequency, Loss Severity

In this section, we refer to a homogeneous portfolio, consisting of r policies (or
insured risks), all issued at the same time and all with duration one year. Homogeneity
of the policies means, in particular, that they are similar in respect of: the type
of risk covered (e.g., fire insurance, motor insurance, or others), policy conditions
(deductibles, limit values or insured valued), the propensity to incur into a claim,
the possible severity of a claim, and so on. The policy year is the same for all the
policies, so that we can easily collect data on this basis. We stress that all the policies
are exposed for one year (the common policy period) to the risk of incurring into one
or more claims.
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Assume that, during the (policy) year, policies report z claims in total, z � r,
with claim amounts y1, y2, . . . , yz. Note that the information is aggregate, as we just
know that z claims have been reported in the portfolio, while we do not know which
policies have reported such claims.

The ratio between the total payout for the portfolio and the number of policies,
i.e., the claim amount per policy

Q = y1 + y2 + · · · + yz

r
(9.7.1)

is called risk premium or average claim cost. Should each policy have paid a (net)
premium Π = Q, then the insurer would be on balance, as the total inflow amount
would be rQ, the same as the outflow amount, y1 + y2 + · · ·+ yz; for this reason, the
quantity Q is looked at as an “observed premium”.

The quantity Q provides an estimate of E[S] (it is reasonable to add a safety
loading to Q, in face of random fluctuations). It is interesting to split Q as follows.
The ratio

n̄ = z

r
(9.7.2)

represents the average number of claims per policy, or the average claim frequency.
Conversely, the ratio

ȳ = y1 + y2 + · · · + yz

z
(9.7.3)

represents the average claim amount per claim, or the average claim severity. Note,
in particular, that n̄ expresses an estimate of E[N], while ȳ provides an estimate of
E[Y1]. Then we have

Q = n̄ × ȳ (9.7.4)

which is the statistical estimate of (9.4.3).
With regard to the average claim frequency, the following splitting is of interest.

Let zmax be themaximumnumber of claims reported by one policy (clearly, zmax ≤ z)
and rh the number of policies realizing h claims (h = 0, 1, . . . , zmax). The number
of policies can be split as follows:

r = r0 + r1 + · · · + rzmax (9.7.5)

while the number of claims can be written as:

z = r1 + 2 r2 + · · · + zmax rzmax (9.7.6)

The average claim frequency can then be factorized as follows:

n̄ = r1 + 2 r2 + · · · + zmax rzmax

r1 + r2 + · · · + rzmax

×
(
1 − r0

r

)
(9.7.7)
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The first ratio (which could also be written as z
r−r0

), represents the average number of
claims per policy reporting claims; the quantity r0

r expresses the no-claim frequency.
Thus, the quantity in brackets in (9.7.7) represents the average frequency of at least
one claim. It is interesting to read (9.7.7) as the statistical estimate of E[N], appro-
priately expressed. As recalled in (1.4.33) (see Sect. 1.4.3), the expected number of
claims per policy is defined as follows:

E[N] =
+∞∑
n=0

n × P[N = n] =
+∞∑
n=1

n × P[N = n] (9.7.8)

Such a quantity can be decomposed as

E[N] = E[N |N = 0] × P[N = 0] + E[N |N ≥ 1] × P[N ≥ 1] (9.7.9)

which reduces to
E[N] = E[N |N ≥ 1] × P[N ≥ 1] (9.7.10)

given thatE[N |N = 0] = 0. It is easy to see that (9.7.7) provides a statistical estimate
of the factors in the right-hand side of (9.7.10).

Equation (9.7.7) is useful to get some information (at least at an aggregate level)
about the concentration of claims on few policies, and then on the acceptability of
the independence assumptions underlying (9.4.3). Indeed, we note that for a given
value of the average claim frequency n̄, the higher is the ratio r1+2 r2+···+zmax rzmax

r1+r2+···+rzmax
, the

stronger is the concentration of claims on fewpolicies. Clearly, if a high concentration
emerges, the independence assumptions should be checked through further investi-
gations, as correlation effects could be present when several claims are reported by
a policy.

Example 9.7.1 In Table9.2 the average claim frequency experienced in two port-
folios is reported. Both portfolios consist of 100000 policies and have reported the

Table 9.2 Claim experience in two portfolios

Both portfolios

Number of policies, r 100000

Number of claims, z 13000

Total claim amount, y1 + y2 + · · · + yz 13000000

Portfolio A Portfolio B

Risk premium, Q 130 130

Average claim severity, ȳ 1000 1000

Average claim frequency, n̄ 0.13 0.13

Average number of claims per policy with claims, z
r−r0

1.08 1.80

Average frequency of at least one claim, 1 − r0
r 0.118 0.072

http://dx.doi.org/10.1007/978-3-319-21377-4_1
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same number of claims. However, portfolio B experiences a higher concentration
of claims on few policies, as witnessed by the average number of claims per policy
with claims. While for portfolio A the low value of the average number of claims
per policy with claims suggests that the independence assumptions could be consid-
ered reasonable, for portfolio B some further investigation could be necessary in this
respect. ❑

9.7.2 Units of Exposure: The Case of Heterogeneous
Portfolios

An exposure unit is a measure of some feature of the insured risk which has proved to
bear a close correspondence to the claim experience. Examples of exposure units are
as follows: insured value (suitable for property insurance), time spent in the portfolio
in a given calendar year (used inmotor insurance), payroll (forworkers compensation
insurance). Exposure units are used to summarize appropriately the cost of claims
incurred or the amount of premiums earned. One example in this respect is provided
by the risk premium, introduced in Sect. 9.7.1.

Refer to a property insurance coverage. The risk premium, as defined by (9.7.1),
requires that policies are homogeneous in respect of the insured value, the time of
entry and the duration; in these circumstances, to get an average information about
the claim cost, we simply divide the total portfolio payout by the number of policies.
We now address how we should measure the average claim cost if the insured values
are different.

Let V ′(1), V ′(2), . . . , V ′(r) be the insured values of the r policies (for which we
still assume the same type of cover, the same time of entry and the same duration).
Reasonably, the higher is the insured value V ′(j), the higher should be the possible
claim amount that we expect from a policy. The average claim cost should then be
measured as follows:

θ = y1 + y2 + · · · + yz

V ′(1) + V ′(2) + · · · + V ′(r) (9.7.11)

i.e., as an average claim amount per unit of exposure (clearly, θ is unit-free). We
note that it is reasonable that those policies with a higher insured value pay a higher
premium. In particular, the same premium rate (i.e., the same premium per unit of
insured value) could be applied to all the policies (given that, apart from the insured
value, they are similar); the premium amount would then be proportional to the
insured value. If θ is the premium rate applied, then the total inflow amount of the
insurer would coincide with the total outflow amount:

θ (V ′(1) + V ′(2) + · · · + V ′(r)) = y1 + y2 + · · · + yz (9.7.12)

In this perspective, θ can be looked at as an observed premium rate.
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Let define the average insured value as follows:

V̄ ′ = V ′(1) + V ′(2) + · · · + V ′(r)

r
(9.7.13)

which, clearly, represents the average exposure per policy. The observed premium
rate θ can be split as follows:

θ = n̄ × ȳ

V̄ ′ = Q

V̄ ′ (9.7.14)

The quantity ȳ/V̄ ′ is named average claim degree. We note that, similarly to the
case of the homogeneous portfolio (see Sect. 9.7.1), the quantity Q = n̄ × ȳ still
expresses the average claim amount per policy; however, due to the different insured
values, such a piece of information is not appropriate neither for pricing, nor for
summarizing the cost of claims incurred.

9.7.3 Units of Exposure: The Number of Policy Years

So far, we have assumed that policies are issued (or renewed) at the same time; more
realistically, issue or renewal times are different. As a first consequence, policy years
are different. It may then become easier, or more natural, to collect claim data on a
calendar year basis (which, trivially, is a term of reference common to all policies),
and this is what we will assume from now on.

A second consequence of the different times of issue (or renewal) is the following.
When the policy year is the same for all the policies, the number of policies which are
in-force at a given time (say, at issue) also represents the number of policies which are
overall in-force during the year we are referring to. Conversely, this correspondence
does not hold when policies have different issue or renewal times. This should be
considered when calculating summary statistics of the cost of claims. For example,
in the risk premium (see (9.7.1)), the total amount of claims incurred in one year
is compared to the number of policies which, during the year, have been exposed
to the risk of generating those claims. In this section, we discuss how we should
assess the denominator of Q when policies have different policy years. As stated
above, we assume that data are collected on a calendar year basis; in particular, then,
y1 + y2 + · · · + yz is the total payout for a portfolio in a given calendar year.

We call number of the exposed to risk (or number of policy years or, in the specific
case of motor insurance, number of car years) the time totally spent in the portfolio
during the calendar year by the policies which are in-force for a part (at least) of such
a year. For example, if a policy is issued on July 1 and a second policy is issued on
February 1 of year t, the number of the exposed to risk during year t is 6

12 + 11
12 = 17

12 ;
actually, the policy issued on July 1 stays in the portfolio for half a year during year t
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(and for half a year during year t + 1), while the policy issued on February 1 spends
11 months in the portfolio in year t (and one month in year t + 1).

The calculation of the number of policy years may be performed exactly, consid-
ering for each policy the exact time spent in the portfolio during the year, or approx-
imately. Clearly, exact calculation techniques do not require any further comment.
As far as approximate methods are concerned, there are some alternative solutions.
The method to be preferred depends on the type of data available. We illustrate
two common approaches; for brevity, we do not give formal details (which would
be cumbersome), but we introduce such approaches through two examples. This is
enough to understand how the approximate methods work.

Example 9.7.2 Assume that we are provided with the information regarding the
number of policies entering a given portfolio, on a monthly basis; see Table9.3 for
an example. Policies may be newly issued or renewed. All are assumed to have term
one year, and to stay in the portfolio for one year.

We can assume that, within eachmonth, policy anniversaries are uniformly spread.
Thus, on average each policy enters in the middle of the relevant month. Split each
year in 24 periods, and let 0 be January 1; then, in each year, the times of possible
issue or renewal of a policy are: 1, 3, . . . , 23. The 74 policies issued or renewed on
January (i.e., at time 1) of year t − 1 spend in the portfolio 23 periods (over 24) in
year t − 1, and 1 (over 24) period in year t; the 89 policies issued (or renewed) on
February (i.e., at time 3) of year t − 1 spend in the portfolio 21 periods (over 24) in
year t−1, and 3 (over 24) periods in year t; . . .; the 80 policies issued (or renewed) on
December (i.e., at time 23) of year t spend in the portfolio 1 period (over 24) in year
t, and 23 periods (over 24) in year t + 1. See Fig. 9.7 for a graphical representation.

Table 9.3 Number of policies according to the period of issue or renewal

Month Number of policies

Year t − 1 Year t

1/1–31/1 74 75

1/2–28/2 89 82

1/3–31/3 82 87

1/4–30/4 69 75

1/5–31/5 81 75

1/6–30/6 95 90

1/7–31/7 98 95

1/8–31/8 79 83

1/9–30/9 85 90

1/10–31/10 93 90

1/11–30/11 90 98

1/12–31/12 70 80
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Fig. 9.7 Graphical representation of the time spent by each group of policies in the portfolio

The total time spent by policies in the portfolio in year t (namely, the number of
policy years in year t) can then be calculated as follows:

74 × 1
24 + 89 × 3

24 + · · · + 70 × 23
24

+ 75 × 23
24 + 82 × 21

24 + · · · + 80 × 1
24 = 1 003.96

(9.7.15)

❑

The method described in Example 9.7.2 is called method of the 24-ths. Possible
adjustments can be easily introduced if data on the policy inception times are more
rare (e.g., if they are available bimonthly or quarterly), or if policies have a duration
shorter than one year. In case data are available on a quarterly basis, the method is
called of the 8-ths (as the year would be split into 8 periods, in this case); if they are
available on a bimonthly basis, the year would be split into 12 periods, and then the
method would be called of the 12-ths. In general, if data are available on a k

2 basis,
the method is called of the k-ths (as the year is then split into k periods).

Example 9.7.3 We now give an example of the census method. Assume that data
provide uswith the information about the number of policies in-force at some specific
dates; see Table9.4 for an example. Again, we assume that all the policies are termed
one year, and that they remain in the portfolio for one whole year.

We can first calculate the average number of policies in-force in each month, as
depicted in Table9.5.

Each of the groups of policies quoted in Table9.5 spend on average one month in
the portfolio. Thus, the number of policy years can be calculated as follows:

1 260 × 1

12
+ 1 362.50 × 1

12
+ · · · + 1 775 × 1

12
= 1 477.50 (9.7.16)

Note that the number of policy years assessed through (9.7.16) corresponds to the
simple arithmetic mean of the average number of policies in-force in each month,
as each group of policies is assumed to spend the same time (i.e., one month) in the
portfolio. ❑

Also the census method may be easily adjusted if data are more rare, or policies
do not spend one whole year in the portfolio.
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Table 9.4 Number of
policies in-force in year t, on
a monthly basis

Time Number of policies in-force

1/1 1200

1/2 1320

1/3 1405

1/4 1380

1/5 1300

1/6 1400

1/7 1450

1/8 1350

1/9 1500

1/10 1650

1/11 1700

1/12 1800

31/12 1750

Table 9.5 Average number
of policies in-force in year t,
on a monthly basis

Month Average number of policies in-force

1/1–31/1 1 200+1 320
2 = 1 260.00

1/2–28/2 1 320+1 405
2 = 1 362.50

1/3–31/3 1 405+1 380
2 = 1 392.50

1/4–30/4 1 380+1 300
2 = 1 340.00

1/5–31/5 1 300+1 400
2 = 1 350.00

1/6–30/6 1 400+1 450
2 = 1 425.00

1/7–31/7 1 450+1 350
2 = 1 400.00

1/8–31/8 1 350+1 500
2 = 1 425.00

1/9–30/9 1 500+1 650
2 = 1 575.00

1/10–31/10 1 650+1 700
2 = 1 675.00

1/11–30/11 1 700+1 800
2 = 1 675.00

1/12–31/12 1 800+1 750
2 = 1 775.00

9.7.4 Updating the Risk Premium to Portfolio Experience

The data set expressing the claim experience of the insurer in a given portfolio could
be inadequate for pricing, either because:

a. the portfolio has been recently issued, and thus has not yet gained an adequate
experience;
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b. the behavior of claims is not stable in time, but evolves according to some trend
(possibly unknown);

c. data are sparse and the sample of the observed claims is considered to be too
small.

In case (a) and (c), the problem relates to the size of the sample, which is considered
to be too small. Data for premium calculation are then usually obtained from other
portfolios (possibly belonging to other insurers), taking care that they have features
similar to the portfolio dealt with. In case (b), the problem has a different nature. The
inadequacy of the data base can be traced to the underlying (unknown) dynamics;
experience could be rich enough but, because of the trend, the observed data reflect
old information. Appropriate adjustments are required before such data can be used
for estimating the cost of future claims.The two situations ((a) and (c) on the onehand,
(b) on the other) require a different treatment; a similar methodological structure can
be designed, but with different implementing profiles. The dynamic problem can be
considered an advanced topic, which for non-life insurance is of particular interest
just for some lines of business; given the introductory character of this chapter, we
do not give details in this regard. In the following, we refer to a static framework and
illustrate the idea of updating in time the pricing basis to new experience; we make
explicit reference to case (a) above.

We refer to an insurer issuing a coverage for which it has no direct experience, and
thus no data. To set the premium, a reference population must be selected, which has
already (or almost) reached a steady state in respect of claim experience, and can thus
provide reliable data. Typically, the reference population is the portfolio of another
insurer, who deals with the same or a similar coverage; the relevant experience is
assumed to be consistent with what will emerge from the new portfolio. Henceforth,
we assume for brevity that policies are homogeneous in respect of the insured value
and that the appropriate exposure unit is the number of policy years.

Let 0 be the time at which the new portfolio is issued and Q0 the risk premium
observed in the reference population. Given thatQ0 is the only available information,
the (equivalence) premium for the new portfolio is set simply as

P0 = Q0 (9.7.17)

At time 1, the new portfolio has gained some experience; let Q1 be the average
claim cost observed in the time-interval (0, 1). At time 1, the insurer has to decide
how to set the premium for the next year, say P1. Three choices are available:

1. the premium is not revised, and thus P1 = P0;
2. the premium is revised, accounting for the new information only, i.e., P1 = Q1;
3. the premium is revised according to the new experience, but continuing to account

also for the initial information.

Choice 1 has the advantage of providing stability to the premium, which is good
from a commercial point of view; however, comparing Q0 with Q1 one can perceive
some differences between the claim experience of the new portfolio and the reference
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population, which would be better not to disregard. On the other hand, choice 2 has
the disadvantage that Q1 may turn out to be exceptionally high or low, for accidental
reasons (e.g., the portfolio is not yet large enough; the policies issued in the first year
are self-selected, and hence they do not yet express appropriately the average claim
experience of the portfolio; and so on). Choice 3 clearly represents an intermediate
solution. In particular, a sound way to set the premium for the second year, i.e., at
time 1, is:

P1 = α1Q1 + (1 − α1) Q0 (9.7.18)

where α1, 0 < α1 < 1, is a given proportion expressing the weight assigned to the
new information (the cases α1 = 0 and α = 1 are excluded, as they correspond,
respectively, to choice 1 and choice 2 above). Reasonably α1 is closer to 0 than 1,
given that the experience gained on the new business is not yet stable.

At time 2, the average claim cost can be assessed with reference to the experience
gained in (0, 2). We let Q2 denote the ratio (9.7.1) based on the data collected in
(0, 2). Such a quantity embeds awider experience thanQ1, but can still be considered
subject to more fluctuations than Q0, as the experience of the insurer is less rich than
that relating to the reference population. Similarly to time 1, the equivalence premium
at time 2 is set as follows

P2 = α2Q2 + (1 − α2) Q0 (9.7.19)

where α2 is the new weight assigned to the portfolio experience. Reasonably, α2 >

α1, but still 0 < α2 < 1. In general, a reasonable rule for setting the premium at time
t is the following:

Pt = αtQt + (1 − αt) Q0 (9.7.20)

where Qt is the average claim cost experienced within the new portfolio in the
period (0, t) and αt is the weight assigned at time t to such information. Reasonably,
0 < α1 < α2 < · · · < αt ≤ 1.

Remark In Sect. 9.7.1, we have described the risk premium as a quantity based on observations
collected in one year. Clearly, the ratio Q could be referred to a wider time span. The advantage
of increasing the time-interval of observation consists in enlarging the data-set. Conversely, some
disadvantages follow: claim amounts could be subject to inflation; given that policies are termed one
year, the homogeneity of the portfoliomay beweakened by new entries (possibly joint to a reduction
of renewals); the claim frequency may be subject to changes in time (due to the development of
new technologies, the introduction of a new regulation, and so on). Thus, the average claim amount
per policy may be exposed to systematic deviations, which are not detected if the risk premium
is assessed with reference to the average experience over more than one year. When adopting
approach (9.7.20) for premium calculation, clearly one assumes that systematic deviations are
either not present or negligible.

A premium calculated through (9.7.20) is called experience premium, and the
approach described by (9.7.20) an experience-rating system; more precisely, since
the premium turns out to be updated on the experience gained on a portfolio, the sys-
tem is referred to as a collective experience-rating. Figure9.8 illustrates the process
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Fig. 9.8 Updating the
premium according to
collective experience-rating

Q0

P0 P1 P2 Pt

Q1

Q2

Qt

of gradually updating the equivalence premium to portfolio experience, which is
realized through (9.7.20).

Formula (9.7.20) is an example of a credibility model, in which information col-
lected from some external source are gradually merged with those collected on a
specific population. The coefficient αt is called a credibility factor and it expresses
the relative reliability (or “credibility”) of the specific information. The wider is the
volume of the specific data relative to the volume of those obtained from the external
source, the higher is the credibility acknowledged to the former. The relation

α1 < α2 < · · · < αt < · · · (9.7.21)

expresses a (reasonable) increase in time of the credibility acknowledged to the
specific experience, in respect of that witnessed by the reference population. When
αt = 1, full credibility has been reached, and the information obtained from the
external source can be disregarded.

Several theoretical models can support the choice of the credibility factors αt . A
distributional assumption must be adopted for the aggregate claim amount S (see, for
some remarks in this regard, Sect. 9.8). It goes beyond the scope of this presentation
to deal with a detailed stochastic modeling of non-life insurance; thus, we do not
develop such a discussion. We just give some comments. We recall that the average
claim cost Q (Qt , in the discussion above) represents an estimate of the expected
aggregate claim amount, E[S]. One idea is to assign full credibility to Qt when the
probability that the estimate Qt is close enough to the true underlying value of the
aggregate claim amount is at a given (high) level (say, 0.95). The notion of “close
enough” clearly requires to be formalized, as follows

P[(1 − a) Qt < S ≤ (1 + a) Qt] = ε (9.7.22)

where a states the width of the band around S (reasonably, a should be low, say 0.01),
and ε is the required probability level (say, 0.95). For an example, see Sect. 9.8.3.
An alternative way, more widely known, to assess the credibility factors involves
Bayesian statistic techniques; for some references, see Sect. 9.13.
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9.8 Stochastic Modeling of the Aggregate Claim Amount

Most of the discussion in Sect. 9.7 assumes that the insurer can rely on an appropriate
data set, in which case assessments can be based on the empirical distribution of the
aggregate claim amount. In some situations, however, calculation are only possible
if a theoretical model is adopted for the random variable S. We stress that, even when
dealing with empirical distributions, assumptions about the probability distribution
of S cannot be avoided. Indeed, in the simple setting of Sect. 9.7, not invoking a
specific choice for the distribution of S, it is anyhow necessary to accept a compound
distribution for S; see also Sect. 9.4.3.

When a theoretical distribution is introduced, several assumptions are accepted;
from a practical point of view, each assumption implies some simplification, which
leads to a representation more or less far away from (or more or less close to) real
situations. Further, dealing with theoretical distributionsmay require some analytical
expertise (and, because of this, someone may consider that working with empirical
distributions is preferable to the adoption of theoretical models). However, the prop-
erties of theoretical distributions facilitate the analysis of many problems, or even
make such an analysis possible. We also note that a theoretical distribution is sum-
marized by a small number of parameters, while an empirical distribution requires
to work always with a large amount of data.

As mentioned earlier, it goes beyond the aim of this book to deal in details with
the theoretical distribution of the aggregate claim amount. However, we think that
some information, and some examples, may be useful to understand which kind of
analyses may be developed through this approach.

9.8.1 Modeling the Claim Frequency

From definition (9.4.1) for the aggregate claim amount, it emerges that to model S
we first need to model the number of claims, N . Several choices are possible, some
of which are more interesting (or useful) for practical applications.

We start from an elementary case. If a policy may experience at most one claim
during the coverage period, then N follows a Bernoulli distribution, i.e.,

N =
{
0 with probability 1 − p

1 with probability p
(9.8.1)

(see Sects. 1.2.3 and 1.4.2), where p is the claim probability. The law has one para-
meter, namely p, which should be estimated through the average claim frequency n̄.

In the non-life insurance business, just for few lines (and, possibly, just under
some restrictive policy conditions) the assumption that each policy may experience
at most one claim is consistent with evidence. In the more realistic case in which a
policymay experience more than one claim, wemust first wonder whether claims are

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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independent or not. The usual assumption is that they are independent; intuitively, this
is a reasonable assumptionwhenwe refer to claims reported by different policies. But
now we are referring to one policy, and in this case some form of correlation among
claims may be present; henceforth, we will keep the assumption of independence
among claims also when referring to a policy. If we know that the maximum number
of claims per policy is nmax, and that each claim has the same probability p to occur,
then N follows a Binomial distribution, i.e.,

P[N = n] =
(

nmax
n

)
p n (1 − p)nmax−n ; n = 0, 1, . . . , nmax (9.8.2)

where nmax and p are the parameters of the law. The choice of nmax should be
suggested by the features of the contract (in particular, by its policy conditions);
conversely, p can be estimated, once again, through the average claim frequency n̄.
Noting that under (9.8.2) we have E[N] = p nmax, the ratio n̄/nmax provides us with
an estimate for p.

A better fitting to empirical data is usually provided by the Poisson distribution,
according to which

P[N = n] = e−λ λn

n! ; n = 0, 1, . . . (9.8.3)

where λ, λ > 0, is the parameter of the law. We recall that the Binomial distribution
with parameters nmax, p is well-approximated by a Poisson distribution with para-
meter λ = p nmax when nmax is large enough and p is small enough. The Poisson law
has been originally developed for rare events; considering that in non-life insurance
most of the insured risks bear a low claim probability, it is not surprising that the
Poisson law turns out to be more appropriate than the Binomial one. The Poisson
law is, for example, more realistic in respect of the maximum number of claims,
which does not need to be stated in advance. We recall that under (9.8.3) we have
E[N] = Var[N] = λ.

The Poisson law offers several analytical advantages. Let Nt be the number of
claims for a policy in a period of t years (t > 0); consistently with the previous
notation, we let N1 = N whenever t = 1. If claims occur independently one from
the other, whatever is the time of their occurrence, from N ∼ Poi(λ) it follows
Nt ∼ Poi(λ t); indeed, the sum of a given number of independent Poisson random
variables is a Poisson random variable, whose parameter is the sum of the parameters
of the original random variables. This result is more fruitful when referred to a
portfolio. If N ∼ Poi(λ) for any policy in the portfolio and if claims reported by
different policies are independent, then N [P] ∼ Poi(λ r) (where N [P] is the total
number of claims in the portfolio in one year and r is the number of policy years for
that year). More generally, if N (j) ∼ Poi(λ(j)) is the number of claims reported by
policy j in one year, then N [P] ∼ Poi(

∑r
j=1 λ(j)) is the number of claims reported

within the portfolio. Extensions to time-intervals shorter or longer than one year are
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straightforward (we would denote by N [P]
t the total number of claims in the portfolio

in a period of t years, t > 0).

Example 9.8.1 Let N ∼ Poi(0.13) be the number of claims for a policy in one
year. Then N [P] ∼ Poi(13 000) is the number of claims in one year for 100000
homogeneous and independent policies. Let us split the year into terms and assume
that the number of claims in each term is independent and identically distributed
in respect of the previous terms; then, for example, the number of claims for the
portfolio in the first term of the year is N [P]

0.25 ∼ Poi(3 250). Further examples can be
easily derived.

Once we know the probability distribution of the number of claims, and the rel-
evant parameter as well, the probability of several events of interest can be easily
assessed. For example, if N ∼ Poi(0.13), the probability that a policy reports no
claim in one year is: P[N = 0] = e−0.13 = 0.878; the probability that no claim is
reported in one year by a portfolio consisting of 100000 independent and homoge-
neous policies is: P[N [P]] = e−13 000 ≈ 0. The probability that 13 000 = E[N [P]]
claims are reported by the portfolio in one year is: P[N [P] = 13 000] = 0.00364. ❑

The parameter λ in (9.8.3) represents the expected number of claims per policy:
E[N] = λ. Thus, it can be estimated through the average claim frequency n̄. We
point out that, when calculating this quantity, the underlying (implicit) assumption
is that all risks in the portfolio have the same attitude to report claims, i.e., they are
homogenous in respect of the claim frequency. More realistically, policies may be
(more or less) heterogeneous in this respect: for some policies, we should expect a
claim frequency higher than n̄, while for others the opposite is true. Thus, we should
think thatN [P] ∼ Poi(

∑r
j=1 λ(j)) and set an appropriateλ(j) for each policy. However,

the piece of information commonly available is the average claim frequency n̄, which

expresses an estimate for the whole population, i.e., for
∑r

j=1 λ(j)

r . In such a situation,
when we model the number of claims per policy, we should consider the parameter
of the Poisson distribution (9.8.3) as a random one. Usually, it is assumed that λ

follows a Gamma distribution, with parameters (ρ,
p

1−p ); then it can be shown that
N follows a Negative Binomial distribution, i.e.,

P[N = n] = �(ρ + n)

n! �(ρ)
p ρ (1 − p)n (9.8.4)

where �(s) = ∫ ∞
0 ts−1 e−t dt is the Gamma function, and ρ and p are the parameters

of the Negative Binomial distribution (0 < p < 1 and ρ > 0). The analytical
advantages of the Poisson assumption are missed when adopting (9.8.4); however,
a better fitting to data may emerge, in particular in respect of dispersion (we note
that for the Poisson distribution we have to accept necessarily E[N] = Var[N];
conversely, the Negative Binomial distribution admitsVar[N] > E[N], as it emerges
in many empirical distributions).

Example 9.8.2 Tables9.6 and 9.7 quote two empirical distributions and the corre-
sponding Poisson and Negative Binomial fitted distributions. Both the Poisson and
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Table 9.6 Empirical distribution of the number of claims per policy, and two fitted distributions;
portfolio A

No. of claims
in a year

Empirical distribution Poisson Negative
Binomial

No. of policies Frequency Probability Probability

0 87897 0.87897 0.87810 0.87906

1 11263 0.11263 0.11415 0.11236

2 785 0.00785 0.00742 0.00812

3 53 0.00053 0.00032 0.00044

4 2 0.00002 0.00001 0.00002

5 0 0 0 0

6 0 0 0 0

7 or more 0 0 0 0

All 100000 1 1 1

Mean 0.13 0.13 0.13

Variance 0.13222 0.13 0.13222

Table 9.7 Empirical distribution of the number of claims per policy, and two fitted distributions;
portfolio B

No. of claims
in a year

Empirical distribution Poisson Negative
Binomial

No. of policies Frequency Probability Probability

0 88146 0.88146 0.87810 0.88152

1 10799 0.10799 0.11415 0.10788

2 973 0.00973 0.00742 0.00976

3 76 0.00076 0.00032 0.00078

4 4 0.00004 0.00001 0.00006

5 1 0.00001 0 0

6 1 0.00001 0 0

7 or more 0 0 0 0

All 100000 1 1 1

Mean 0.13 0.13 0.13

Variance 0.1381 0.13 0.1381

theNegativeBinomial distribution represent appropriately themagnitude of the num-
ber of claims per policy. However, the Negative Binomial distribution better captures
the dispersion, both in terms of variance and right tail. In portfolio A (see Table9.6),
the heterogeneity of policies is not very strong, so that a Poisson approximation may
be satisfactory. For portfolio B (see Table9.7), adoption of the Poisson distribution
could lead to an underestimate of the extreme cases, i.e., of the right tail. ❑



9.8 Stochastic Modeling of the Aggregate Claim Amount 469

9.8.2 Modeling the Claim Severity

If we accept the assumptions originating a compound probability distribution for S
(see Sect. 9.4.3), in order to define the probability distribution of the aggregate claim
amount, we can separately define the probability distribution of the claim frequency
N (see Sect. 9.8.1) and of the claim severity Y1.

Realistically, the set of possible values of Y1 is limited; however, usually proba-
bility distributions taking value in [0,+∞) are selected. Clearly, continuous distrib-
utions are considered. Common choices include the Gamma, Lognormal, Pareto and
Loggamma distributions. The specific choice is suggested by the particular features
of the line of business dealt with. The Normal distribution can be assumed as a limit
case, if the Central Limit Theorem applies.

The actuarial application of continuous positive probability distributions repre-
senting the claim severity does not raise special issues; some probabilistic and sta-
tistical expertise is clearly required. Of course, the actuarial analyses that can be
performed through the modeling of the claim severity are important for many pur-
poses. Given the introductory character of this chapter, we are not going into details
in this respect. We just provide some examples.

Example 9.8.3 Table9.8 provides the empirical distribution of the claim severity for
a given portfolio. The distribution is clearly asymmetric. Some investigations could
be performed just through the empirical distribution; for example, we could assess
the probability that the claim size is above a given class among those displayed in
the table. However, several information are missed (for example, we do not know
neither what is the average size of claims whose amount is higher than 50, nor the
average claim size inside each class). ❑

Example 9.8.4 Figure9.9 plots two theoretical distributions, namely a Lognormal
and a Gamma, keeping the same expected value and variance of the empirical distri-
bution quoted in Table9.8. While both distributions are asymmetric, differences in

Table 9.8 Empirical
distribution of the claim
severity

Claim size No. of claims

0–5 3116

5–10 6446

10–20 2084

20–30 731

30–40 450

40–50 120

50 and over 53

All 13000

Mean 10

Variance 76.38
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Fig. 9.9 Theoretical
distributions (density
functions) of the claim
severity

claim size

Lognormal

Gamma

the shape are apparent. Clearly, any theoretical distribution implies some approxi-
mations in respect of the observed data. However, with a theoretical distribution we
gain in generality.

As mentioned above, the choice of the theoretical distribution depends on the fea-
tures of the line of business dealt with. The Lognormal and the Gamma distributions
are appropriate in many cases; alternative distributions, already mentioned, are the
Pareto (useful in particular for representing very large claims) and the Loggamma.

❑

9.8.3 Modeling the Aggregate Claim Amount

The aggregate claim amount S, as defined through (9.4.1), is a function of the stochas-
tic process {N, Y1, Y2, . . . }. As stated in Sect. 9.8.1, we assume for S a compound
distribution. In particular, if N has a Poisson distribution, then S has a Poisson com-
pound distribution; if N has a Negative Binomial distribution, then S has a Negative
Binomial compound distribution; and so on.

Investigations which require to deal with the probability distribution of S typically
involve the assessment of the probability that S falls in a given range of values. See, for
example, (9.7.22), concerning the update of the pricing basis to the claim experience.
Another example is given by solvency investigations, in which we are interested in
the probability that the aggregate claim amount of a portfolio (and not just for one
policy) is above a given threshold.

Analytical results are difficult to obtain. For example, assume that we want to
assess P[S > s], where s is a given value. Let FS(s) be the probability distribution
function of S, namely FS(s) = P[S ≤ s], and FY1(y) be the probability distribution
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function of Y1, namely FY1(y) = P[Y1 ≤ y]. Clearly, P[S > s] = 1−FS(s). We have

FS(s) =
+∞∑
n=0

P[N = n] × P[(Y1 + Y2 + · · · + Yn) ≤ s|N = n] (9.8.5)

Given that Y1, Y2, . . . , Yn are assumed to be independent ofN , identically distributed
and reciprocally independent, we have

P[(Y1 + Y2 + · · · + Yn) ≤ s|N = n] = P[(Y1 + Y2 + · · · + Yn) ≤ s] = F∗(n)
Y1

(s)

(9.8.6)

where F∗(n)
Y1

(s) is the n-th convolution of FY1(y) (for n = 0, it is conventionally

assumed that F∗(0)
Y1

(s) = 0 if s < 0 and F∗(0)
Y1

(s) = 1 if s ≥ 0). Replacing in (9.8.5),
we find

FS(s) =
+∞∑
n=0

P[N = n] × F∗(n)
Y1

(s) (9.8.7)

Computing (9.8.7) analytically is hard work; numerical or simulation techniques are
usually adopted.

Example 9.8.5 To provide an example of investigation performed through the prob-
ability distribution of S, we go back to probability (9.7.22), which allows one to
assess whether full credibility can be acknowledged to the portfolio experience. We
recall that in (9.7.22) the quantity Qt expresses an estimate of E[S]. So, we rewrite
as follows

P[(1 − a)E[S] < S ≤ (1 + a)E[S]] = ε (9.8.8)

or also as follows

P

[ −aE[S]√
Var[S] <

S − E[S]√
Var[S] ≤ aE[S]√

Var[S]
]

= ε (9.8.9)

where S−E[S]√
Var[S] is the standardized random variable. When the experience is reason-

ably large, a standard Normal distribution can be assumed for S−E[S]√
Var[S] . Let a = 0.1

and ε = 0.95. Then
0.1E[S]√
Var[S] = 1.96 (9.8.10)

from which we get
E[S] = 19.6

√
Var[S] (9.8.11)

When Qt , which estimates E[S], fulfills (9.8.11), then we can assign full credibility
to the portfolio experience.
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A more detailed conclusion can be reached if we assume a specific probability
distribution for the number of claims. Assume that N follows a Poisson distribution.
Then, both the expected number of claims, E[N], and their variance, Var[N], can be
estimated by the average claim frequency n̄, given that for the Poisson law E[N] =
Var[N]. When we plug this into (9.5.8), we obtain the following expression for
Var[S]

Var[S] = E[N] (Var[Y1] + (E[Y1])2) = n̄ (σ 2 + (ȳ )2) (9.8.12)

where σ 2 denotes the estimate for Var[Y1]. Recalling that we can estimate E[S] as
follows

E[S] = n̄ × ȳ (9.8.13)

we can rewrite (9.8.11) as
√

n̄ = 19.6

√
σ 2

(ȳ )2
+ 1 (9.8.14)

expressing the minimum number of expected claims required for full credibility. The
coefficient 19.6 would of course be different if we make choices other than a = 0.1
and ε = 0.95. ❑

We note that (9.8.7) refers to one policy only; if we are dealing with a solvency
investigation, we should rather refer to the aggregate claim amount for the portfolio.
Let S(j) be the aggregate claim amount for policy j, and S[P] the aggregate claim
amount for the portfolio; clearly, S[P] = S(1) + S(2) + · · · + S(r), where r is the
number of policies. If policies represent independent risk, and if S(j) has a Poisson
compound distributionwith Poisson parameter λ(j) and claim probability distribution
F

Y (j)
1

(y), then it can be shown that also S[P] has a compound Poisson distribution,

with Poisson parameter λ = λ(1) + λ(2) + · · · + λ(r) and claim probability distri-

bution FY1(y) = ∑r
j=1

λ(j)

λ
F

Y (j)
1

(y). This result contributes to understand the large

preference, in practice, for the adoption of a Poisson distribution for the modeling
of the claim frequency.

Example 9.8.6 Refer to a homogeneous portfolio, consisting of r policies, which
represent independent risks. Each policy may report N claims, in a year, and we
assume N ∼ Poi(0.13) for each policy. The claim amount is fixed to 10; Y1 then has
a degenerate probability distribution. The number of claims in the portfolio, N [P],
has a Poisson distribution with parameter 0.13 r. The aggregate claim amount for the
portfolio, S[P], is simply defined as S[P] = 10N [P]. Table9.9 quotes the probability
that the aggregate claim amount is higher than the net premium, i.e., the probability
of loss, for several portfolio sizes. As in Example 9.5.1, we set Π = 1.4. Due to the
assumptions, we have: P[S[P] > r Π ] = P[N [P] > r Π

10 ]. As the number of policies
r increases, such a probability decreases, as a result of the pooling effect. ❑
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Table 9.9 Probability of loss
in a portfolio: P[S[P] > r Π ] No. of policies, r P[S[P] > r Π ]

1 0.12190

10 0.37318

100 0.32487

1000 0.17791

10000 0.00292

9.9 Risk Classification and Experience-Rating

In Sects. 9.4–9.7 we dealt with premium calculation assuming that the same pre-
mium rate is applied to each policy; this is justified when policies are similar, i.e.,
homogeneous (except possibly for the sum insured and the time of issue or renewal).
However, as emerged in Sect. 9.8.1, policies always differ for some features; in some
cases, such differences suggest the adoption, within the same line of business, of
specific premium rates.

9.9.1 Risk Classes and Rating Classes

Policies for which the insurer can assume the same attitude to record claims are
usually grouped into a risk class. For example, in fire insurance buildings are classi-
fied according to use (e.g., domestic, commercial, industrial building), location (e.g.,
urban, industrial, rural area), building materials (e.g., cement, bricks, wood), number
of floors (e.g., one, two, three, four, five, six or more). The basics of risk classification
have already been described in Sect. 2.2.7. Policies to which the same premium rate
is applied are grouped into a rating (or premium) class. Usually, premium classes are
fewer than risk classes, for the reasons discussed in Sect. 2.2.7. The consequences
in terms of mutuality and solidarity of a rating system for heterogeneous risks were
discussed in Sect. 2.2.8. In this section we focus on some implementing aspects of
risk classification, with specific reference to the non-life business.

The definition of a risk class is based on:

• risk factors, i.e., the features of a risk which prove to explain the claim experience
(in the example above, the risk factors are: use, location, building materials and
number of floors);

• the outcomes (or modes) of each risk factor, which can be either qualitative or
quantitative (in the example, the possible outcomes of the risk factor use are:
domestic, commercial, industrial).

The selection of the risk factors and their outcomes is based on a statistical inves-
tigation, which we do not discuss. We just describe how the selected risk factors can
be accounted for in order to define differentiated (or specific) premium rates.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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At issue, some risk factors are observable, while others are unobservable. Some
information in respect of the latter emerge from the specific claim story of the pol-
icy. Observable risk factors originate a specific premium rate at issue; in respect of
unobservable risk factors, an individual experience-rating system can be adopted,
through which the premium rate is updated in time according to the individual claim
experience of the policy.

9.9.2 Risk Classification at Issue

We first focus on the possibility to differentiate premium rates at issue, consistently
with the risk factors observable at that time.We refer to the example of fire insurance,
and consider the four risk factors mentioned above:

• use, with c1 = 3 possible modes, i.e., domestic, commercial, and industrial build-
ing;

• location, with c2 = 3 possible modes, i.e., urban, industrial, and rural area;
• building materials, with c3 = 3 possible modes, i.e., cement, bricks, and wood;
• number of floors, with c4 = 6 possible modes, i.e., one, two, three, four, five, and
six or more.

Combining the possible outcomes of the four risk factors, we can define c = c1 ×
c2 × c3 × c4 = 162 risk classes. Possibly due to some inconsistencies among some
modes of the risk factors (e.g., industrial building in wood), the actual number of
risk classes could be c′ < c. In what follows, we assume that rating classes coincide
with risk classes.

At issue, as a part of the underwriting process, the policy (or, better, the risk) is
selected and assigned to an appropriate risk class; thus, an a-priori risk classification
is determined. The risk class is identified by the outcome of each risk factor (e.g.,
domestic building, located in an urban area, built in bricks, with one floor). Shortly,
we denote the risk class by (i, j, h, k) (each index referring to an outcome of the
relevant risk factor). Experience gained in risk class (i, j, h, k) allows the insurer
to estimate a risk premium Qi,j,h,k or a risk premium rate θi,j,h,k , specific of that
risk class. The insurer can further summarize the average experience in the portfolio
through the risk premium Q or the risk premium rate θ , calculated accounting for the
experience of the whole portfolio. For some risk classes, it will turn out Qi,j,h,k < Q
(or θi,j,h,k < θ ), while for others Qi,j,h,k > Q (or θi,j,h,k > θ ). The problem we
want to focus on concerns the calculation of the premium to be applied to risks
assigned to class (i, j, h, k), considering the information provided by the specific and
the average risk premium (rate). We note that while the premium rate is the same
for all the policies belonging to the same risk class, the premium amount may be
different because of a different insured value. To shorten the notation, we refer to the
calculation of premium rates only; with pi,j,h,k we denote the equivalence premium
rate applied to policies in risk class (i, j, h, k).
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Retracing what discussed in Sect. 9.7, the equivalence premium rate pi,j,h,k for
class (i, j, h, k) should be estimated through the risk premium rate θi,j,h,k . However,
due to the low number of policies in some classes, some risk premium rates θi,j,h,k
could be unreliable, because too heavily subject to random fluctuations. Conversely,
the information provided by θ should be stable enough, given that it is collected
over the whole portfolio. So it is wiser to assess pi,j,h,k as a function of θ . Common
choices are as follows:

pi,j,h,k = θ + ai + bj + dh + gk (9.9.1)

known as the additive (or linear) rule, and

pi,j,h,k = θ αi βj δh γk (9.9.2)

known as the multiplicative (or exponential) rule. The parameters ai, bj, dh, gk in
(9.9.1), αi, βj, δh, γk in (9.9.2) are the so-called relativities: they relate the premium
rate of a class to the features of that class. Apart from the advantage provided by θ

(in respect of θi,j,h,k), rules (9.9.1) and (9.9.2) require a lower number of parameters
than what would be required by estimating pi,j,h,k just through θi,j,h,k . In this latter
case, the number of parameters would be c (i.e., one risk premium rate θi,j,h,k for each
risk class; we recall that c = 162 in our example); when adopting (9.9.1) or (9.9.2)
the number of parameters reduces to c1 + c2 + c3 + c4 + 1 (i.e., 16 in our example):
one for each mode of the four risk factors, and one represented by the average risk
premium rate θ . Each of the relativities in (9.9.1) and (9.9.2) is estimated on a wider
data set than θi,j,h,k ; for example, ai must be estimated on all the risk classes in which
the first risk factor takes outcome i. Addressing one risk factor at a time, however,
could result in disregarding some possible correlations among the risk factors.

9.9.3 Risk Classification at Renewal Times: Individual
Experience Rating

When an individual experience-rating system is adopted, the insurer is willing to
reduce the premium for a policy if its claim experience is below the average; con-
versely, the insured must be willing to accept a premium increase if his/her claim
experience is above the average. Such an arrangement is very common for motor
insurance.

Premium rates for new policies are the same for all policies, unless observable
risk factors suggest the application of some relativities (see Sect. 9.9.2). According to
the individual experience, year by year the premium rate is updated, either increased
or decreased, so that at renewal the policy is applied a specific premium rate. Thus,
an a-posteriori risk classification is determined.
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Let pt be the premium rate applied to a policy after t years since issue. Further, let
p denote a reference premium rate, typically representing the premium rate applied
at issue. Individual experience could be reported in terms either of the number of
claims or the claim amounts. Usually, reference is to the number of claims. More
specifically, if pt−1 is the premium rate applied at time t − 1, then the premium rate
at time t is defined as

pt = f (pt−1, nt) (9.9.3)

where nt is the number of claims reported in year (t − 1, t) and f is an increasing
function of nt . This is how a Bonus–Malus (BM) system, possibly the most well-
known individual experience rating arrangement, works. We point out that, instead
of changing the premium rate, the individual experience could result in a revision of
policy conditions. For example, the deductible could be decreased if no claim occurs,
or increased in the opposite case, thus rewarding the insureds who report less claims.

It is worthwhile to give some information on a Bonus–Malus system, due to its
wide application, in the motor insurance business in particular. The risk class to
which a risk is assigned, in relation to the number of claims occurred previous to
the current year, is called merit class. The premium rate is revised each year as a
function of the number of claims reported in the latest year and the current merit
class. In more detail, the items of a BM system are the following.

• The set {1, 2, . . . , m} of merit classes.
• The reference premium rate p (possibly, a net premium rate, π , namely including
a safety loading).

• The premium coefficient γ (j) for merit class j, j = 1, 2, . . . , m. The premium
applied to policies in class j is defined as p γ (j). For some classes, the so-called
bonus classes, γ (j) < 1; for others, the so-called malus classes, γ (j) > 1. Typi-
cally, bonus and malus classes are defined so that γ (1) < γ (2) < · · · < γ (m).
Thus, classes with a low ranking are bonus classes (a premium discount is applied),
while those with a high ranking are malus classes (a premium increase is applied).

• The entry class i, 1 < i ≤ m, to which new policies (for which no previ-
ous experience is available) are assigned. The premium coefficient is set so that
γ (i) ≥ 1.

• The matrix of the transition rules, stating the new merit class cj,nt for a risk
previously in merit class j, which has reported nt claims in the latest year (see also
Table9.10).

The premium rate to be applied at time t to a policy coming from class j is defined
as follows: pt = p γ (cj,nt ).

In some systems, γ (j) < 1 for j = 1, 2, . . . , m − 1, while γ (m) = 1. In this case,
there is only one malus class, where the full premium is required. The arrangement
is called No-Claim Discount (NCD) system: policies which receive a discount are
those that did not report any claim in the latest year. The longer is the period free of
claims, the higher is the discount applied to the premium.



9.9 Risk Classification and Experience-Rating 477

Table 9.10 Matrix of the transition rules
# claims in current year
0 1 2 . . .

pr
ev
io
us

m
er
it

cl
as
s

1 c1,0 c1,1 c1,2 . . .
2 c2,0 c2,1 c2,2 . . .
. . . . . . . . . . . . . . .
i ci,0 ci,1 ci,2 . . .
. . . . . . . . . . . . . . .
m cm,0 cm,1 cm,2 . . .

Table 9.11 Matrix of the transition rules for a BM system
# claims in current year merit class premium coefficient
0 1 2 3 4 . . . j γ( j)

pr
ev
io
us

m
er
it
cl
as
s

1 1 3 5 7 9 . . . 1 35%
2 1 4 6 8 9 . . . 2 50%
3 2 5 7 9 9 . . . 3 55%
4 3 6 8 9 9 . . . 4 70%
5 4 7 9 9 9 . . . 5 85%
6 5 8 9 9 9 . . . 6 100%
7 6 9 9 9 9 . . . 7 110%
8 7 9 9 9 9 . . . 8 130%
9 8 9 9 9 9 . . . 9 150%

Example 9.9.1 Table9.11 describes thematrix of the transition rules of aBMsystem,
and the relevant premium coefficients (the example is not taken from a real BM
system, but anyhow it reflects a realistic arrangement). There are 9 merit classes;
briefly, the transition rule is defined as follows:

cj,nt =
{
max{j − 1, 1} if nt = 0

min{j + 2nt, 9} if nt > 0
(9.9.4)

A policy in the highest class is applied a premium which is more than 4 times that
required to a policy in the lowest class.

Table9.12 describes the matrix of the transition rules of a NCD system, and the
relevant premium coefficients (neither in this case the example is taken from real
data). There are 6 merit classes; briefly, the transition rule is defined as follows:

cj,nt =
{
max{j − 1, 1} if nt = 0

6 if nt > 0
(9.9.5)

A policy in the highest class is applied a premium which is 2.5 times that required
to a policy in the lowest class. ❑

The ultimate goal of a BM or a NCD system is to define specific premium rates;
however, one can guess that some heterogeneity remains among the policies assigned
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Table 9.12 Matrix of the transition rules for a NCD system
# claims in current year merit class premium coefficient
0 1 or more j γ( j)

pr
ev
io
us

m
er
it
cl
as
s 1 1 6 1 40%

2 1 6 2 75%
3 2 6 3 80%
4 3 6 4 85%
5 4 6 5 90%
6 5 6 6 100%

to the same merit class. For example, referring to the NCD system in Table9.12,
policies in class 6 may have reported just one claim in the latest year, or two claims,
or may have reported one claim in each of the latest two years. Thus, some form of
solidarity is anyhow present. Further, solidarity effects may occur among different
classes; indeed, the BM or NCD premium system follow the idea described by
(2.2.27) (or (2.2.28); see Sect. 2.2.5). Choices in respect of the number of merit
classes, the transition rules, the premium coefficient do affect such solidarity effects.
Intuitively the solidarity effects are stronger in face of a lower number ofmerit classes,
a narrower range of variation of the premiumcoefficients, a faster transition backward
to the lowest classes. As noted in Sect. 2.2.8, solidarity effects may originate adverse
selection; on the other hand, a strong personalization of premiums may reduce the
mutuality effect inside each class (given that we should expect a lower number of
policies in each class), or also lead to unsustainable premium rates for the worst
risks. When designing a BM or a NCD discount system, such aspects require careful
consideration.

Remark A further aspect which is investigated when designing a BM or a NCD system is the
so-called stationary distribution, i.e., the composition of the portfolio (in terms of the number of
policies in each class, as a percentage of the total number of policies in the portfolio) when the
portfolio itself reaches a steady state. The premium coefficients should be defined considering that
under the stationary distribution the insurer should be on balance (see (2.2.27) in Sect. 2.2.5).
The stationary distribution depends on the claim frequency and on the transition rules. Refer, for
example, to the NCD system in Example 9.9.1, and let rj be the percentage of policies in class j
when the stationary distribution is reached. The following conditions must be fulfilled in the steady
state:

r1 + r2 + · · · + r6 = 1
r1 = r1 P[N = 0] + r2P[N = 0]
r2 = r3 P[N = 0]
. . .

r6 = (r1 + r2 + · · · + r6)P[N > 0]

(9.9.6)

If we assume, for example, that the number of claims for a policy in one year follows a Poisson
distribution with parameter λ, then the probabilities P[N = 0] and P[N > 0] in (9.9.6) are easy to
assess (namely, P[N = 0] = e−λ, P[N > 0] = 1 − e−λ). Solving the linear system (9.9.6) is then
little algebra. We stress, however, that the steady state is a notional scenario, in particular due to the
possibility of adverse selection.

http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
http://dx.doi.org/10.1007/978-3-319-21377-4_2
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9.10 Technical Reserves: An Introduction

In this section, we discuss a simple dynamic model which allows us to introduce the
fundamentals of the technical annual management of a non-life portfolio. We refer
to a homogeneous portfolio (say, fire insurance or motor insurance), consisting of
policies holding the same policy year. The investigation is developed with reference
to the policy year (0, 1), where t = 0 is the (first) time of issue of the policies.

Let Π [T][P] be the total amount of the expense-loaded premiums cashed from the
policies at time 0. With such an amount of money, the insurer faces:

• the initial commission, to be paid at time 0;
• annual expenses (overhead and other administrative expenses), to be paid during
the year;

• the cost of claims occurring during the year.

We assume that α Π [T][P] is the amount of the initial commission at time 0, while
β Π [T][P] is the total amount of the annual expenses. Such expenses are paid gradually
in time; it is usually acceptable to assume that their payment is uniformly spread over
the year, so that t β Π [T][P] is the total amount paid in (0, t). Finally, by S[P]

t we denote
the aggregate claim amount reported within the portfolio in (0, t).

The quantity
Π [T][P] (1 − α − β t) (9.10.1)

represents the residual amount of premiums, once expenses up to time t, 0 < t ≤ 1,
have been paid. Figure9.10 plots the typical behavior of such a quantity. Note that we
are disregarding the time-value of money (so that no accrual due to interest gained on
investments is accounted for); this is justified by the short-term nature of the non-life
business (and by the fact that we are referring to one year only).

0 time t

Π [T][P]

1

Π [T][P] (1 α) expenses, Π [T][P](α +β t)

premiums net of expenses, Π [T][P] (1 α β t)

Fig. 9.10 Premium amount net of expenses
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We define the portfolio assets at time t as the amount

At = Π [T][P](1 − α − β t) − S[P]
t (9.10.2)

Once more, we point out that we are disregarding investment perspectives; we
are further disregarding specific capital allocation to the portfolio; thus, At simply
represents the residual amount of the premiums cashed by the insurer, once claims
and expenses have been paid. Figure9.11 provides an example (left panel), in which
it is assumed that claims (in terms both of frequency and amount) occur continuously
and uniformly in time (right panel). It is further assumed that claims are immediately
settled. Reasonably, claims do not occur uniformly in time; Fig. 9.12 suggests a more
realistic path for the aggregate claim amount, assuming that claims occur just at some
(random) times during the year, and in an amount which is not always the same.

At any time t, 0 ≤ t < 1, a share of the assets At must be reserved to face
future claims and expenses, i.e., those possibly emerging in (t, 1). Future expenses
consist of the annual expenses (not yet paid), which as stated above are assumed to
emerge uniformly in time. For future claims, we can make an assumption similar to
that accepted when calculating the premium (see Sect. 9.4), i.e., that they also occur
uniformly in time. The reserve set up to meet future claims and expenses, which is

0 time t

Π [T][P]

1

Π [T][P] (1 α)

claims settled, S[P]t

assets, At

0 time t

claims settled, S[P]t

Fig. 9.11 Portfolio assets (left panel) and portfolio aggregate claim amount (right panel); uniform
distribution of the aggregate claim amount

0 time t

Π [T][P]

1

Π [T][P] (1 α)

claims settled, S[P]t

assets, At

0 time t1

claims settled, S[P]t

Fig. 9.12 Portfolio assets (left panel) and portfolio aggregate claim amount (right panel); discrete
distribution of the aggregate claim amount
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Fig. 9.13 Portfolio assets
and (unearned) premium
reserve

0 time t

Π [T][P]

1

Π [T][P] (1 α)

premium reserve, R[Π ]
t

called (unearned) premium reserve, is a proportion 1 − t (i.e., the time to maturity
of the policies) of the premiums, net of the initial expenses (which were fully paid
at time 0). Thus, the (unearned) premium reserve, R[Π ]

t , is defined as follows:

R[Π ]
t = (1 − t)Π [T][P] (1 − α) (9.10.3)

The time profile is clearly linear, as sketched in Fig. 9.13. For some lines of business
claim occurrence may be affected by cyclical or seasonal effects; in this case, the
proportion of the initial premium set aside would be other than 1 − t.

We point out that (9.10.3) defines a portfolio reserve.When policies hold different
policy years, the calculation of the premium reserve may be performed exactly for
each policy; then, the portfolio reserve can be obtained by summing up the relevant
individual values. An alternative consists in grouping policies whose policy anniver-
sary falls in a given period of the year (e.g., in January) and then, following the
method of the k-ths described in Sect. 9.7.3, estimating for each group the average
time to maturity.

As mentioned in Sect. 9.4.2, usually claims are not immediately settled (see the
example provided in Fig. 9.6). In Fig. 9.14 it is assumed that claims occurring at the
second claim occurrence are not immediately settled. A reserve must be set up, given
that the insurer’s obligation has become due; uncertainty may remain in respect of
the amount to be settled and the time of payment. The relevant reserve is called the
claim reserve, which we denote by R[S]

t , and its amount is given by the estimated
amount of the claims which have already occurred, but have not yet been settled.

When calculating the claim reserve, the time between claim occurrence and claim
settlement must be accounted for. The approximate assumption adopted for premium
calculation (namely, claims occur on average in themiddle of the year, and are imme-
diately settled) is no longer acceptable. Statistical procedures, either deterministic
or stochastic, are available. Deterministic models, in particular (which we briefly
describe in Sect. 9.12) are typically satisfactory for lines of business with frequent
claims. Ad hoc estimates may be required for very specific claims, in particular when
extreme events occur.
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Fig. 9.14 Portfolio assets
and claim reserve

0 time t

Π [T][P]

1

Π [T][P] (1 α)
claims settled, S[P]t

assets, At

claim reserve, R[S]
t

The term claim reserve is somewhat generic, and can be better specified. The
outstanding claim reserve refers to claims which have been reported to the insurer,
but have not yet been settled (referring to Fig. 9.6, the outstanding claim reserve is
calculated at some time between t2 and t3); the calculation can be based either on
experience or specific estimates. The IBNR (Incurred But Not Reported) claim reserve
refers, instead, to claimswhich are expected to have already occurred, but have not yet
been reported to the insurer (referring to Fig. 9.6, this reserve is assessed at some time
between t1 and t2, time t1 being unknown to the insurer). It is anyhow appropriate to
set up a reserve, whose calculation can just be based on experience. The outstanding
and the IBNR reserves are the most important items of claim reserves. Further items
are: the IBNER (Incurred But Not Enough Reported) claim reserve, which concerns
claims which have already been notified, but whose damage has just been partially
reported to the insurer; the reopened claim reserve, which concerns claims which
need to be reopened (after a first settlement), possibly because of litigation or further
information gained after settlement; the notified (open) claim reserve, which refers
to claims which have already been reported, but have not yet received an accurate
assessment by the insurer; other items are possible, depending on market practice.

Turning to expenses, there is clearly a time-lag between the income of the expense
loading and the payment of expenses. The premium reserve already accounts for
future expenses, namely overhead and other administrative expenses and processing
expenses for claims which have not yet occurred. Depending on the way the claim
cost is assessed (either inclusive or not of settlement expenses), the claim reservemay
(or not) already account for processing expenses relating to claims already occurred.
If the claim reserve does not include claim settlement expenses, or if it is felt that
the amount of expenses is underestimated within current reserves, a specific reserve
may be set up, usually named the provision for claim handling costs.

Finally, we mention the contingent reserves. Such reserves are usually set up to
provide additional funds should the emerging claim experience differ adversely from
the assumptions underlying the main claim reserve. The idea is to set aside money
in years in which the claim experience is favorable, to face adverse fluctuations in
some years. Examples of contingent reserves are the catastrophe reserve and the
claim equalization reserve. The underlying idea is to spread the cost of large claims
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not just on the year of occurrence, but on more than one year. This way, contingent
reserves provide a smoothing of the annual economic results obtained through the
management of a non-life portfolio. Indeed, in many countries they are treated as
capital reserve (for example, for tax purposes).

9.11 Earned Premiums, Incurred Claim Amounts
and Profit Assessment

In this section, we examine the role of technical reserves on the emergence of annual
profits, i.e., on profit timing. We make reference to the premium reserve and, gener-
ically, to the claim reserve.

Consider Fig. 9.15, which summarizes the example discussed in Sect. 9.10, intro-
ducing the premium and the claim reserve.

Still considering the same policy year for policies in the portfolio, we can rea-
sonably assume that time 0 falls in the middle of the calendar year, i.e., that policies
enter on average in the middle of the year. Let τ be the calendar year. At the end of
the calendar year τ , i.e., at time 1

2 in the picture, the annual profit must be reported
in the balance sheet. Intuitively,

A1/2 − R[Π ]
1/2 − R[S]

1/2 (9.11.1)

represents the annual profit for this cohort in calendar year τ , i.e., in the calendar
year of issue. Replacing (9.10.2) into (9.11.1), we find

Π [T][P] (1 − α − β
1

2
) − S[P]

1/2 − R[Π ]
1/2 − R[S]

1/2 (9.11.2)

0 time t

Π [T][P]

1

Π [T][P] (1 α)
Π [T][P] (1 α β )

At

R[S]
t

R[Π ]
t

1/2

Fig. 9.15 Portfolio assets, premium reserve and claim reserve
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where

• the quantityΠ [T][P] −R[Π ]
1/2 , the so-called earned premiums, represents the amount

of premiums contributing to profit in year τ ;
• the quantity S[P]

1/2 + R[S]
1/2, the so-called incurred claim amount, represents the cost

of claims occurred in year τ , either settled or not;
• the quantity Π [T][P] (α + β 1

2 ) represents the expenses incurred in year τ .

We stress that the premium reserve R[Π ]
1/2 represents the amount of premiums cashed

in year τ that will contribute to profit in year τ + 1; similarly, the claim reserve R[S]
1/2

represents the amount of claims which will be settled in the future, but whose cost
contributes to profit in year τ .

We now generalize the definitions of earned premiums, incurred claim amount
and annual profit, introduced above. We refer to a calendar year, which we denote
as year (t − 1, t), in which policies enter at different times (thus, we now address
the more realistic case in which policies do not hold the same policy year). Let
Π

[T][P]
t be the total amount of premiums cashed in year (t − 1, t), also called written

premiums. Such premiums do not contribute entirely to profit in year t, and thus
they must be reduced by the premium reserve at time t. Further, some of the policies
in-force during year t paid the relevant premium in the previous year; the part of such
premiums contributing to profit in current year is measured by the premium reserve
at time t − 1. Thus, we define earned premiums in year t the quantity

Π
[P][earned]
t = Π

[P]
t + R[Π ]

t−1 − R[Π ]
t (9.11.3)

As far as claims are concerned, we first note that a part of the claim amount settled
in year t, S[P]

t , refers to claims incurred in previous years; the estimate of their cost
was included in the claim reserve at time t − 1. Further, claims incurred in year t but
not settled are accounted for in the claim reserve at time t. Thus, we define incurred
claim amount in year t the quantity

S[P][incurred]
t = S[P]

t + R[S]
t − R[S]

t−1 (9.11.4)

Remark We can now give a general definition of the risk premium Q (see Sect. 9.7.1). In general
terms, with reference to a given calendar year, the risk premium is defined as follows:

Q = incurred claim amount

units of earned exposure
(9.11.5)

The units of earned exposure can consist of the number of policy years, the total amount of the
insured value in the year, and so on.

In (9.11.4), it is interesting to note that if a claim which occurred in the past
is settled in the current year, the possible difference between the settled and the
reserved amount contributes to the incurred claim amount in the year of settlement.
Similarly, if a claim has occurred previous to time t − 1 and has not yet been settled
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at time t, it is accounted for in the claim reserve both at time t − 1 and at time t.
In principle, such a claim must not contribute to the incurred claim amount of the
current year (as the amount set up in the reserve at the end of the year, i.e., the final
reserve, should be offset by the relevant allocation in the reserve at the beginning of
the year, i.e., the initial reserve); however, if the estimate of the cost of the claim is
updated in the final reserve, either because of new information or simply because of
a different methodology for the calculation of the claim reserve, the update to the
cost contributes to the incurred claim amount of the current year. The calculation of
the claim reserve should then be maintained stable in time, so to avoid unnecessary
updates to the cost of claims, and then biased assessments of the annual profit.

The annual profit (or loss) can be expressed as follows

PL[P]
t = Π

[P][earned]
t − S[P][incurred]

t − EXt (9.11.6)

or more explicitly as

PL[P]
t = Π

[P]
t − S[P]

t + R[Π ]
t−1 + R[S]

t−1 − R[Π ]
t − R[S]

t − EXt (9.11.7)

In both cases, EXt represents the expenses paid during year t.

Remark The annual profit defined above is also named industrial profit, as it originates from
the “industrial activity” of the insurer, consisting in the creation of a pool of individual risks (see
Sect. 1.6.3). It is interesting to compare expression (9.11.7) to (6.4.9) for life insurance. The two
quantities consist of similar terms: premiums received, benefits paid, change in the reserve value.
In the case of life insurance, also incomes on the investment of the reserve are considered. Indeed,
while for a life insurer the investment activity is considered part of the obligation taken in respect
of the policyholder, for a non-life insurer only the transfer of individual risks is addressed as the
main task of the insurer.

Several indexes are usually calculated, in order to give a summary of the perfor-
mance of the portfolio. The claim ratio (or loss ratio) is defined as follows

LRt = S[P][incurred]
t

Π
[P][earned]
t

(9.11.8)

A ratio lower than 1 informs us that the claim costs incurred in the year have been
covered by the earned premiums.

Remark We note that the term loss ratio is more common than claim ratio, as suggested also by
the notation adopted. Contrarily to the choice made so far to refer to the payout of the insurer as to
the claim amount (see also Sect. 9.3), in the following we will then refer to ratio (9.11.8) as to the
loss ratio.

The expense ratio is defined as follows

ERt = EXt

Π
[P][earned]
t

(9.11.9)

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_6
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and represents the part of the earned premiumswhichmust be used to cover expenses.
The combined ratio, defined as follows

CRt = S[P][incurred]
t + EXt

Π
[P][earned]
t

(9.11.10)

summarizes the industrial profitability of the portfolio; for example, a combined ratio
lower than 1 would detect a situation of positive industrial profit.

9.12 Deterministic Models for Claim Reserves

As mentioned in Sect. 9.10, the claim reserve is originated by the delay between
claim occurrence and claim settlement. Depending on the line of business, such a
delay may run from some weeks (e.g., in property insurance and for small claims)
to several years (e.g., in liability insurance, and in general if the claim is large).
Reasons of the delay are to be found in the time required for processing the claim,
the need for ascertaining the responsibility and the size of the damage, the delayed
reporting of the claim, litigation, and so on. For the largest claims, a custom estimate
is usually worked out; for the other claims, statistical assessments are performed. In
this section we address statistical methods.

Deterministic methods for claim reserves are based on an average assessment of
the time-pattern of a claim; conversely, stochastic methods make explicit reference
to its randomness. Deterministic methods offer the advantage of simplicity, and thus
their implementation is straightforward; at the same time, they are simplified inmany
respects, and hence they may lead to a biased assessment. Overall, a considerable
degree of judgment is required for claim reserves; in many situations it is appropriate
to compare several methods to get to a reasonable estimate of the claim reserve. In
this section, a description of the main deterministic methods is provided, so to intro-
duce the main issues involved in the calculation of the claim reserve; for stochastic
methods, some references are quoted in Sect. 9.13.

9.12.1 Run-Off Triangles

A run-off triangle collects data on outstanding claims, classifying the available infor-
mation in respect of both the year of claim occurrence and the year of claim settle-
ment. Table9.13 provides an example, where S[P]

i,j is the aggregate claim amount

paid up to j years since occurrence for claims originating in year i. Alternatively, the
run-off triangle could quote the incremental claim amounts (namely, S[P]

i,j − S[P]
i−1,j),

the number N [P]
i,j of claims reported up to year j for claims incurred in year i, or other



9.12 Deterministic Models for Claim Reserves 487

Table 9.13 Run-off triangle
time to settlement (or development year)
0 1 . . . j . . . τ − i . . . τ −1 τ

ye
ar

of
or
ig
in

(o
r
ac
ci
de
nt

ye
ar
) 0 S[P]0,0 S[P]0,1 . . . S[P]0, j . . . S

[P]
0,τ−i . . . S

[P]
0,τ−1 S[P]0,τ

1 S[P]1,0 S[P]1,1 . . . S[P]1, j . . . S
[P]
1,τ−i . . . S

[P]
1,τ−1

. . . . . . . . .

i S[P]i,0 S[P]i,1 . . . S[P]i, j . . . S[P]i,τ−i
. . . . . .

τ S[P]τ,0

information. In the following, we just refer to run-off triangles with information as
those provided in Table9.13.

Assume that within τ years since occurrence all claims are fully settled. In
Table9.13, which is filled in at time τ , the quantity S[P]

0,τ represents the ultimate
aggregate claim amount for claims originating in year 0; for such claims, we do
not expect to have further settlements in the future. For year i, i = 1, 2, . . . , τ , the
amount S[P]

i,τ−i is provisional, as further settlements are expected in the next i years.
Let Ui be the ultimate aggregate claim amount estimated according to an appropriate
method. The claim reserve set up at time τ is

R[S]
τ =

τ∑
i=1

(Ui − S[P]
i,τ−i) (9.12.1)

In the following, we describe some approaches to the estimate of the ultimate
aggregate claim amount Ui.

Example 9.12.1 In the next sections, numerical examples are based on the run-off
triangle quoted in Table9.14, where we have also reported the premium amount
earned in the various years of origin of claims. We assume that all claims are settled
within 4 years since occurrence; thus, S[P]

0,4 = 2 627 is the ultimate aggregate claim
amount for claims occurred in year 0.A reserve must be set up for claims occurred
in year i, i = 1, 2, 3, 4, as further settlements are expected in the next i years. Thus,
the reserve at time 4 is: R[S]

4 = ∑4
i=1(Ui − S[P]

i,4−i). ❑

Table 9.14 Run-off triangle and earned premiums
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9.12.2 The Expected Loss Ratio Method

Assume that a block of business was initiated setting a given target for the loss (or
claim) ratio, i.e., for the ratio between the incurred claim amount and the earned
premium (see (9.11.8)). Such a target is referred to as the expected loss ratio; we will
denote it as ELR. If Π

[P][earned]
i represents the amount of premiums earned in year

i, then the ultimate aggregate claim amount for claims originating in year i can be
estimated as follows

U[ELR]
i = ELR × Π

[P][earned]
i (9.12.2)

Example 9.12.2 Refer to data in Table9.14, and assume that the expected loss ratio
is 75%. For each year i of origin, i = 0, 1, . . . , 4, Table9.15 quotes the ultimate
aggregate claim amount estimated according to the expected loss ratio, U[ELR]

i =
0.75Π

[P][earned]
i , the amount to be reserved, U[ELR]

i − S[P]
i,4−i, and the claim reserve

at time 4 assessed through the ELR approach, R[S][ELR]
4 . Note that for year 0 the

difference U[ELR]
i − S[P]

0,4 has been set to 0, also in face of U[ELR]
i �= S[P]

0,4; having
assumed that claims are fully settledwithin 4 years since occurrence, no reserve needs
to be set up for claims occurred in year 0. More in general, should U[ELR]

i < S[P]
i,4−i,

the difference U[ELR]
i − S[P]

i,4−i must be set to 0, as it is not possible to contribute to
the reserve with a negative term. ❑

As it emerges also from Example 9.12.2, the ELR method is very simple and
requires few data. Disadvantages are given by the subjectivity of the assessment of
ELR and the static nature of the model; the development of claim amounts may sug-
gest that the quantity ELR is more andmore unlikely, but no update to such a quantity
is implied by the methodology. In particular, the estimated ultimate aggregate claim
amount, U[ELR]

i , depends only on the year of origin, and not on the time j passed
since then. The approach may be useful when dealing with a new business, for which
no previous experience is available on the likely time-pattern of claims.

Table 9.15 Expected ultimate aggregate claim amount and claim reserve through the ELRmethod

Year i U[ELR]
i U[ELR]

i − S[P]
i,4−i

0 2550.00 0.00

1 3000.00 79.00

2 3225.00 187.00

3 3900.00 1800.00

4 3750.00 2650.00

R[S][ELR]
4 4716.00
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9.12.3 The Chain-Ladder Method

The chain-ladder (CL) method assumes that the time-pattern of claims is stable in
time, apart frompossible randomfluctuations. In particular, the following assumption
is accepted

S[P]
i,j+1 = S[P]

i,j dj i = 0, 1, . . . τ ; j = 0, 1, . . . , τ − 1 (9.12.3)

where dj (dj ≥ 1) is the development factor of the cumulative aggregate claim amount
from year j to year j + 1 since claim occurrence. The development factors dj are also
known as link ratios. Note that they do not depend on the year of origin i, but just on
the time to settlement j. Assuming that claims are fully settled within τ years since
occurrence, it turns out dt = 1 for t = τ, τ + 1, . . .

Example 9.12.3 With reference to data in Table9.14, Table9.16 quotes the observed

development factors, i.e., the experienced ratios
S[P]

i,j+1

S[P]
i,j

. For any j, the observed devel-

opment factors seem to be subject to random fluctuations only; taking their average,
such random fluctuations should then be smoothed away.

The last row of Table9.16 quotes the average observed development ratio, for
each year j since occurrence. More precisely, it is a weighted average of the annual
development ratios, with weights given by the current cumulative aggregate claim
amounts; for example:

1.821 = 1.800 × 790 + 1.900 × 910 + 1.850 × 995 + 1.750 × 1 200

790 + 910 + 995 + 1 200
(9.12.4)

Replacing into (9.12.4) the expression of the observed development factors, we find
quite easily

1.821 = 1 422 + 1 729 + 1 841 + 2 100

790 + 910 + 995 + 1 200
(9.12.5)

which is the usual way to estimate the link ratios. ❑

Table 9.16 Observed development factors
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According to data in the run-off triangle, the development factor for year j is
estimated as follows (see Example 9.12.3):

d̄j =
∑τ−1−j

i=0 S[P]
i,j+1∑τ−1−j

i=0 S[P]
i,j

(9.12.6)

The development factor dj describes, for any origin year i, the increase of the
cumulative aggregate claim amount from time j to time j + 1 since occurrence. We
further define fj as the development factor to the full settlement of a claim, i.e.,

fj = dj × dj+1 × · · · × dτ−1 (9.12.7)

with ft = 1 for t = τ, τ + 1, . . . Clearly, the factor fj is estimated through the
estimated development factor d̄j+h; we will denote by f̄j the estimated value of fj.
The ultimate aggregate claim amount for claims originated in year i once j year have
passed since occurrence is estimated as follows through the chain-ladder approach:

U[CL]
i,j = S[P]

i,j f̄j (9.12.8)

Note that U[CL]
i,j is proportional to the accumulated aggregate claim amount observed

to date, and then depends both on the year of origin and the time passed since then.

Example 9.12.4 Refer to data in Table9.14. For each year i of origin, i = 0, 1, . . . , 4,
Table9.17 quotes the estimated development factor to full development, f̄4−i, the
ultimate aggregate claim amount estimated according to the chain-ladder approach,
U[CL]

i,4−i = f̄4−1 S[P]
i,4−i, the amount to be reserved, U[CL]

i,4−i −S[P]
i,4−i, and the claim reserve

at time 4 assessed through the chain-ladder approach, R[S][CL]
4 . Note that, contrarily

to the ELR approach, U[CL]
i,4−i − S[P]

i,4−i ≥ 0 and in particular U[CL]
0,4 − S[P]

0,4 = 0. ❑

When comparing the findings in Examples 9.12.2 and 9.12.4, we might conclude
that the chain-ladder approach leads to a more accurate assessment of the ultimate
aggregate claim amount than what is the case for the expected loss ratio method.

Table 9.17 Expected ultimate aggregate claim amount and claim reserve through the CL method

Year i Factor f̄4−i U[CL]
i,4−i U[CL]

i,4−i − S[P]
i,4−i

0 1.000 2627.00 0.00

1 1.050 3066.93 145.93

2 1.149 3491.05 453.05

3 1.840 3863.88 1763.88

4 3.350 3685.17 2585.17

R[S][CL]
4 4948.04
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In some respects, this is the appropriate conclusion; certainly, for each year of ori-
gin, through the chain-ladder method the estimate of the ultimate aggregate claim
amount is updated to the information collected so far, as the estimate is expressed as a
proportion of the current accumulated amount (see (9.12.8)). However, the assump-
tions underlying the chain-ladder approach may be unsatisfactory in some cases.
The basic assumption concerns the time-pattern of each accident year, assumed to
be stable in time; on the contrary, the development in time of claims may change.
The estimate of the ultimate aggregate claim amount may be distorted by a different
dynamics of the claim payment patterns; for example, if the administrative process-
ing of claims is speeded up, the total claim amount is overestimated. In the extreme
case that no claim has been settled to date, the method predicts a total claim amount
which is 0. Further, the claim amounts could be affected by inflation, which would
imply a trend in the behavior of the cumulative aggregate claim amount; this problem,
however, can be easily dealt with, by adjusting appropriately the observed aggregate
claim amounts.

Overall, the chain-ladder method is simple and practicable, and has been largely
used in practice. In this section, we have described the basic version;many extensions
have been proposed, so to overcome some of the main limitations of the approach.
See Sect. 9.13 for some references.

9.12.4 The Bornhuetter-Ferguson Method

The Bornhuetter-Ferguson (BF) method merges the findings of the expected loss
ratio with those of a projected method, such as the chain-ladder method.

First refer to (9.12.8), from which we obtain

S[P]
i,j = U[CL]

i,j
1

f̄j
(9.12.9)

If we accept that f̄j is a good indicator of how the aggregate claim amount should
evolve in time, then Eq. (9.12.9) shows us that the coefficient 1/f̄j represents the
share of the ultimate aggregate claim amount that have already been settled to date.
We note that S[P]

i,j represents the liability reported to date.

Now take U[ELR]
i , which represents the ultimate liability that we expect at the

beginning of the year of origin of claims, i.e., at issue. After j years since issue (or,
since the year of origin of claims), the quantity

U[ELR]
i ×

(
1 − 1

f̄j

)
(9.12.10)

represents the liability still to emerge for claims originated in year i.
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The Bornhuetter-Fergusonmethod estimates the ultimate aggregate claim amount
as the sum of the reported and the emerging liability, namely

U[BF]
i,j = S[P]

i,j + U[ELR]
i ×

(
1 − 1

f̄j

)
(9.12.11)

Replacing (9.12.9) into (9.12.11), we obtain the alternative expression

U[BF]
i,j = U[CL]

i,j × 1

f̄j
+ U[ELR]

i ×
(
1 − 1

f̄j

)
(9.12.12)

which shows us that U[BF]
i,j is the weighted average of the ultimate aggregate claim

amount estimated through the chain-ladder and the expected loss ratio approach.
Since f̄j decreases in time, the higher is j, the higher is the weight assigned to claim
information data (i.e., to the estimate obtained through the chain-ladder method).
The Bornhuetter-Ferguson method then uses the initial ELR estimate as long as
claims are not paid or reported. Further, it assumes that past experience is not fully
representative of the future.

Example 9.12.5 Still referring to data in Table9.14, for each year i of origin,
i = 0, 1, . . . , 4, Table9.18 quotes the ultimate aggregate claim amount estimated
according to the expected loss ratio, the chain-ladder and the Bornhuetter-Ferguson
approach, and the amount to be reserved according to the three methods. Note that
when few years have passed since the year of origin, the quantity U[BF]

i,j is closer to

U[ELR]
i than toU[CL]

i,j ; vice versa whenmany years have already passed. As it emerges
fromTable9.18, alternativemethods result in different estimates of the claim reserve.
After having investigated the reasons of the differences and considered the specific
features of the line of business dealt with, a final value should be assessed by the
reserving actuary. In particular, we point out that the actuary could find it is necessary

Table 9.18 Expected ultimate aggregate claim amount and claim reserve through the ELR, CL and
BF methods

Year i Factor f̄4−i U[ELR]
i U[ELR]

i −
S[P]

i,4−i

U[CL]
i,4−i U[CL]

i,4−i −
S[P]

i,4−i

U[BF]
i,4−i U[BF]

i,4−i −
S[P]

i,4−i

0 1.000 2550.00 0.00 2627.00 0.00 2627.00 0.00

1 1.050 3000.00 79.00 3066.93 145.93 3063.75 142.75

2 1.149 3225.00 187.00 3491.05 453.05 3456.53 418.53

3 1.840 3900.00 1800.00 3863.88 1763.88 3880.37 1780.37

4 3.350 3750.00 2650.00 3685.17 2585.17 3730.65 2630.65

R[S][ELR]
4 4716.00 R[S][CL]

4 4948.04 R[S][BF]
4 4972.29
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to set up a reserve for claims still to be settled after τ years since occurrence; personal
judgement is required in this case, as data are not available (or are not statistically
reliable). ❑

9.12.5 Further Aspects

Asmentioned in Sect. 9.12, the methods examined above for the calculation of claim
reserves are deterministic; indeed, no explicit assumption about the stochastic path
of the aggregate claim amount is introduced. Formal statistical models could be
adopted, whose presentation goes beyond the purpose of this book.

In the previous discussion, the data referred to concern the aggregate claim
amount. However, the patterns of the claim settlement may behave differently than
the pattern of the number of claims. The average cost per claim method, which
is deterministic, considers two run-off triangles: one for the number of the incurred
claims and one for the average payment per claim. The chain-laddermethod, possibly
with extensions, is applied separately to the two run-off triangles; then, the ultimate
aggregate claim amount is estimated by multiplying the ultimate number of claims
and the ultimate average cost per claim (thus following the splitting in (9.4.3)).

In the example referred to above, four years are required to reach the full settlement
of claims. In practice, the time-pattern of claims could require a longer time. From
an economic point of view, it would make sense to allow for the value of time, i.e.,
to discount future liabilities consistently with the timing of their emergence. We
note that, for example, the chain-ladder method allows us to estimate such a timing;

indeed, the quantities S[P]
i,j (dj − 1), S[P]

i,j (dj+1 − dj), . . . represent (respectively) the
amounts estimated to be settled in 1,2,…years from now for claims originated in year
i. However, in many legislations it is not admitted to discount future liabilities when
estimating the claim reserve, which must be rather assessed according to the ultimate
cost; clearly, an implicit safety-loading is thus embedded in the valuation. In general,
the investment activity is not considered to fall within the traditional business of a
non-life insurer. For example, contrarily to the life insurance business, the annual
industrial profit (see (9.11.7) and the remark following such Equation) does not
include investment earnings. Clearly, this does not mean that non-life insurers do not
make investments. Assets backing the claim reserve must be appropriately invested,
and they originate financial earnings which are reported within the annual general
profit (or loss) of the insurance company.

9.13 References and Suggestions for Further Reading

A number of actuarial textbooks deal with the technical aspects of non-life insur-
ance. The textbook by Brown and Gottlieb (2007) provides a general introduction
to ratemaking and reserving, while Hart et al. (1996) describes several aspects of
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actuarial practice for non-life insurance. Mathematics and statistics of non-life insur-
ance are presented by Wüthrich (2014).

Practical aspects of health insurance are described by Black and Skipper (2000),
also dealing with life insurance products, and by Pitacco (2014), where actuarial
methods for sickness insurance and disability insurance are also presented.

Risk classification and experience-based ratemaking, in particular bonus–malus
systems, are dealt with by Denuit et al. (2006) and Lemaire (1995). Basic ratemaking
concepts and techniques are described in Werner and Modlin (2010). Ratemaking
with generalized linear models is addressed by Ohlsson and Johansson (2010).

The calculation of reserves is addressed by Taylor (2000) and Friedland (2009);
stochastic claim reserving methods are described by Wüthrich and Merz (2008).

A simple introduction to stochastic models for non-life insurance is provided by
Boland (2007) and Hossack et al. (1983). Loss distributions are described in Hogg
and Klugman (1984), while Mikosch (2006) makes use of stochastic processes.

Finally, we mention Haberman (1996) for historical remarks on the development
of actuarial models, including contributions to the actuarial technique for non-life
insurance.
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